-

~

Reliable Embedded Systems

Organizing our CanSat project towards success

(Organizing your other work at the same time)

Niels Malotaux

*+31-30-228 88 68 niels@malotaux.nl

_

N R Malotaux

Consultancy

www.malotaux.nl

/

Malotaux - Embedded 2010

1

4 N
Niels Malotaux

e Project Coach
e Evolutionary Project Management (Evo)

my recent

design
e Requirements Engineering

e Reviews and Inspections

 More than 30 years Embedded Systems Design
experience

e Expert in helping projects to be successful

o J

Malotaux - Embedded 2010 2

-

_

Who are you?

e Who areyou?

e What do you expect?

Malotaux - Embedded 2010

-

_

Seminar Program 7 ~ 11 June 2010 - every morning 9:00 - 12:30

Monday: General introduction Reliable Embedded Systems
e What causes failure and what can we do about it

Tuesday: Requirements and Design
e What are we supposed to accomplish
e How to select the best way to do that
e How to document for better understanding

Wednesday: Planning
e How to make sure we’ll be ready on time
e You will learn how to accomplish much more in less time

Thursday: Testing, Reviews and Inspections
e Learning to find our mistakes early and never make them again

Friday Master Class: actually organizing our project
e Using what we learnt to set up our project for success

~

Malotaux - Embedded 2010

-
Do you want your project to fail ?

e If you want to make your CanSat project a success, you
should attend all sessions

e If you want your project to be a success, make sure you
attend all five days !

e Those who attended all sessions may ask Niels for
advice by email or Skype during the project

e E-mail: niels@malotaux.nl

e Skype name: nielsmx

_

Malotaux - Embedded 2010

mailto:niels@malotaux.nl

4 N
This seminar should be highly interactive

e You don’t learn much if only listening to a long presentation
e Alot of discussion will teach you more
e So prepare to be very interactive

e Think in advance about:
e Questions about Embedded Systems Design
e How much time you have available to do the project
e All what you think you have to do for the CanSat project

Expected problems with CanSat
e What else you have to do apart from the project

e You may email me a list of these things
_ (then I can prepare better) .

Malotaux - Embedded 2010 6

-

_

If you don’t have time

If you don’t attend, you will use more time
Attending the seminar will save you a lot of time

Not only the CanSat project will be more successful:
your other work will also be more successful in shorter time

Therefore, if you don’t have time, you should attend !!!

Malotaux - Embedded 2010 7

4)
Embedded System?

e Information processing subsystem of embedding system
e Performing specific functions

e Not visible or directly accessible by the users of the
embedding system

e Often switched on only once, and then running for years

o /

Malotaux - Embedded 2010 8

_

Malotaux - Embedded 2010

_

Malotaux - Embedded 2010

10

-

_

How about the Embedding System ?

e Should we talk about Embedded Systems ?

e If we don’t consider the whole System we will provide
inadequate interfaces

Malotaux - Embedded 2010

11

-
Actual Systems

Actual system

-
Embedding system

-

sensors —>»

Embedded system

Sensors
actuators

~

Embedded s e
communication
system

actuators €«<—¢

sensors
actuators

Embedded = . .
communication
system

<€<—>» communication

J

N
\

L

Malotaux - Embedded 2010

12

-

o

ATM (Automatic Teller Machine)

Malotaux - Embedded 2010

13

-

o

A lot of Embedded Systems

Malotaux - Embedded 2010

14

-

o

Washing machine

Malotaux - Embedded 2010

15

-

_

MP3 player

Malotaux - Embedded 2010

16

-

o

Nano-satellite

Delfi-C3

Delft University of Technology

/

Malotaux - Embedded 2010

17

_

Malotaux - Embedded 2010

18

Delfi
N3xt

_

Malotaux - Embedded 2010

19

-

_

Reliable Embedded Systems?

e |t should simply work
e Howreliable?

e Reliability is an element of Dependability

Malotaux - Embedded 2010

20

4)
Dependability

e Some embedding systems can be switched off
e Many embedded systems we cannot switch off

e We have to trust the correct operation

o J

Malotaux - Embedded 2010 21

-

o

AHOB (Automatic Half Barrier Crossing)

Malotaux - Embedded 2010

22

Why it didn’t work
is irrelevant

What we deliver
should simply work

__Is that so difficult?

~
ADOB

(Automatic Double Barrier Crossing)

1train every 4 minutes

Few years of trouble
before some stability

At >22°C still trouble

Malotaux - Embedded 2010

23

Dependability is a complex concept

e Availability

e Readiness for correct service
e Reliability

e Continuity of correct service

e Safety

e Not causing damage

* Integrity
e No improper system alterations

e Internal
e External —» Security

e Maintainability
e Ease of required alterations

_

Malotaux - Embedded 2010

-

_

Availability

e Dependability.Availability
e Readiness for correct service
e Scale: % of <TimePeriod> a <System> is <Available> for its <Tasks>

e Probability that the system will be functioning correctly
when it is needed

e Examples
e (preventive) maintenance may decrease the availability
e Telephone exchange (no dial tone) < 5 min per year (99.999%)
e Snow on the road

Malotaux - Embedded 2010 25

Availability

Downtime Downtime Downtime

Availability 7% per year per month per week

Typical usage

90% 36.5 day 72 hr 16.8 hr
95% 18.25 day 36 hr 8.4 hr
98% 7.30 day 14.4 hr 3.36 hr
99% 3.65 day 7.20 hr 1.68 hr
99.5% 1.83 day 3.60hr 50.4 min
99.8% 17.52hr 86.23 min 20.16 min
99.97% (three nines) 8.76 hr 43.2 min 10.1 min Web server
99.95% 4.38 hr 21.56 min 5.04 min
99.99% (four nines) 52.6 min 4.32 min 1.01 min Web shop
99.999% (five nines) 5.26 min 25.9 sec 6.05 sec Phone network
N 99.99997% (six nines) 31.5 sec 2.59sec 0.605sec Future network)

Malotaux - Embedded 2010 26

-

_

Reliability

e Reliability
e Continuity of correct service
e Keeps working as intended

e Scale: Mean time for a <System> to experience <Failure Type>
under <Conditions>

e MTBF - Mean Time Before Failure
e MTBR - Mean Time Between Repairs
e MTTR - Main Time To Repair

e Reliability does not automatically imply safety

Malotaux - Embedded 2010

27

Safety

Safety

e Not causing death, injury, iliness, damage
to people, equipment, environment

e Probability that x people die per year
e Example: star-system for cars (adult / child, in-car / pedestrian)

e System staying in safe state despite failures
e Safety does not automatically imply reliability

e A safe system may stop functioning, as long as damage
is avoided
e Car?
e Airplane?

_

Malotaux - Embedded 2010

4 N
Failures

HIlEY

e Low frequency / low demand rate A
e Anti-lock braking (ABS) Ava‘\

e Air bags
» PFD - Probability the Function fails on Demand

* Frequent or continuous use . b"‘\o*s
e Normal braking @e ‘a
e Steering

» MTTF - Mean Time To Failure

qéﬁgieﬁv’
N > After-the-Event Protection)

Malotaux - Embedded 2010 29

-

_

SIL - Safety Integrity Level

Infrequent use, low demand

SIL
Safety Integrity Level

4

3
2

1

PFD
Probability Fail on Demand

<103
<104
<103

<107

Frequent or continuous use

SIL
Safety Integrity Level

4

3
2

1

MTTF (years)
Mean Time To Failure

> 10,000 yr
> 1,000 yr
>100 yr
>10 yr

Availability

99-999%
99-99%
99-9%
99%

Failures per
hour

<108
<107
<10°

<107

Malotaux - Embedded 2010

30

Fault tolerance

Fault tolerance

e Ability (how much) to function reliably also if faults occur

Full Fault tolerance

e Absolute Functioning reliably also if faults occur
* Delivering all services whether errors occur or not

e Primary mechanism is replication of software, hardware,
information, and preventive maintenance

e Graceful degradation

e Continuing delivering services even when errors occur,
discarding less important services

e Fail-safe system
N e Aborting operation in a safe state

Malotaux - Embedded 2010 31

-

_

h A

Redundancy
Steer-by-wire Controller CANT CAND
|
angle > >
Sensor BON
Hand -
whes! Andle AchEior
Aduior ECLD
|' Vihesl [Acustor feedback
feachack

Figure 1. Hardware architecture of a steer-by-wire system.

Malotaux - Embedded 2010

32

_

Security

Dependability.Security
Free from intrusions (theft, alteration)
Scale: Time required to <break into the system>

Can our competition jam our CanSat communication ?

Malotaux - Embedded 2010

33

-

_

Availability risks of development ?

e Delivering the right thing
o At theright time

Malotaux - Embedded 2010

34

Reliability Engineering

e Reliability

e No failures in products and systems
o Reliability Engineering
Preventing the creation of failure

Engineering analysis

Failure analysis

Stress test

ref Albertijn Barnard

~

Malotaux - Embedded 2010

35

Reliability engineering actions ref Albertijn Barnard

e Concurrent engineering

e Integrated project teams

e Design reviews

e Mechanical and electrical stress predictions
e Component derating analysis

e Electrolytic capacitor life calculations

e FMEA and FTA

e System modeling

e Highly-Accelerated Life Testing (HALT) and Highly-
Accelerated Stress Screening (HASS)

_ Field return root cause analysis

Malotaux - Embedded 2010

4)
Failure Mode and Effect Analysis

e System - focuses on global system functions

e Design - focuses on components and subsystems

e Process - focuses on manufacturing and assembly process
e Service - focuses on service functions

e Software - focuses on software functions

o /

Malotaux - Embedded 2010 37

-

o

CanSat 2009 project

Malotaux - Embedded 2010

38

_

Malotaux - Embedded 2010

39

4 M
The result of this year’s ARLISS flights

e We launched airplane style CanSat

e First flight’s record is 4187 m and second is 301 m

* In third flight, we got a moving picture in the sky

e We couldn’t get control record from radio transmitter

Future plans

e We must develop a new radio transmission system so
as to get the downlink data from CanSat more certainly

o J

Malotaux - Embedded 2010 40

_

What was the main result ?

- |rtfiight 2nd flight 3 flight

Fly back with control !! with control !!?? free fall
Camera fail fail success
Soft Landing fail fail fail

)

Malotaux - Embedded 2010

41

-
Why so much failure ?

 Not only the Keio team
e Trial and error?

e Hope?

o 27

_

Malotaux - Embedded 2010

42

4)
CanSat 2010: Failure is not an option!

e How to make sure it will simply work

e Calculate how to achieve our goals by design (not hope)

e Learning lessons from previous attempts

e Do root cause analysis on previous attempts

e What went wrong, why and how will we prevent failure ?
e Did the system keep a log of activities (for analysis) ?

e Did we do sufficient fundamental experiments ?

e Did the designers keep a Design Log ?

e Did the designers systematically plan their project ?

o /

Malotaux - Embedded 2010 43

/ [
DesignLog

e Text

e Drawings!

e On subject order

e Initially free-format
e Forallto see

e All concepts contemplated
e Requirement
e Assumptions
e Questions
e Available techniques
e Calculations

e Choices + reasoning:
o If rejected: why?
e If chosen: why?

e Rejected choices
e Final (current) choices

_ * Implementation

e |n computer, not loose notes, not in e-mails, not handwritten

-

Chapter
*‘Requirement - What to achieve

*Assumpti
*Questions AAnswers

*Design options
*Decision criteria
Decision —» implementation spec

*New date: change of idga:
*Design options
_*Decision criteria
Decision —» implementation spec

J

Malotaux - Embedded 2010

44

Risk

An uncertain event or condition that,
if it occurs,
has a negative effect

on a project’s objectives
(PMBOK)

» 0% probability is not a risk

» 100% probability is an issue or a problem

_

Malotaux - Embedded 2010

4 N
Risk Confidence Confidence I"Confidence | worst
of Estimate | ~ | of Estimate | ~ | of Estimate |
Model (22SFS0 1 Ccase ?
|
l 1
Probability Probability o
of Event of Impact X :
l l '
[
y I
Event |——| Impact — Cost :
[
T | '
[
[
Event Impact 1 :
Driver(s) Driver(s) T :
T T '
[
™ ' '
. . |
Prevention Contingency Risk Value |
Plans Plans |
V., =P, %P xC | { R
N /

Malotaux - Embedded 2010

Checklists for brainstorm

¢ Human risk
e In the project
o After the project

e Technical risk

* Can we make it Each of these can have
* Willit survive it’s own checklist

* Environmentalrisk ({0 trigger the recognition
 Example: CE of real risks

Regulatory risk
e Example: CE

e Consequential risk

K oo ~

Malotaux - Embedded 2010

-

_

What are Risks in our Project?

Are these really Risks?
0% probability is not a Risk
100% probability is not a Risk

Malotaux - Embedded 2010

48

Many known risks are hardly risks

Most of the real risks are in the product ...~

i'.
*

Most of the known risks are in the project Y

* P *C P

P impact — 0

vRisk =P event impact

We don’t only design the product,
We also design the project
If we control 80% of the risks by design

\ We have more time to handle the 20% real risks y

Malotaux - Embedded 2010 49

4 ™

Risk mitigation
vRisk =P event * P impact * Cost
control avoid reduce pass-on accept
P subcontract?? self-insure
id P;=0 Wl insure

\ J

Malotaux - Embedded 2010 50

Murphy’s Law

e Whatever can go wrong, will go wrong

e Should we accept fate 22

Murphy’s Law for Professionals:
Whatever can go wrong, will go wrong ...
Therefore:

We should actively check all possibilities that can go wrong
and make sure that they cannot happen

o J

Malotaux - Embedded 2010 51

-

_

Exercise

e Which risks can we expect in our CanSat project ?
e What are we going to do about it ?

e Save in DesignLog

Malotaux - Embedded 2010

52

4 ™
Issues for reliability ?

e Radiation

e Temperature, temperature cycles, temperature in vacuum
e Vibration

* Pressure: vacuum, up to 1 atm

* Mass - Weight - Size

* No single point of failure

* Worst case

e Power supply, power consumption

e Components

o /

Malotaux - Embedded 2010 53

-
Worst reliability risks ?

e Mechanics?
e Design errors or weaknesses
e Wear
e Unexpected behavior

e Electronics?
e Design errors or weaknesses
e Unexpected behavior

e Software?
e Design errors or weaknesses
e Unexpected behavior

_

Malotaux - Embedded 2010

54

Embedded software

e Embedded

e Invisible computing power for specific purpose

e Concurrent
o Several (interacting) processes run at the same time

e Reactive
e Reacts on external signals

e Real-time
e Reactions are appropriately immediate

e Complex
e More complicated than we can oversee

_

Malotaux - Embedded 2010

55

Complexity

e How difficult to understand and verify the design or
implementation

e Complexity can be reduced by

e Methods/thoughts/tools/tables/diagrams/abstractions if they
increase our understanding and/or ability to verify

e First developing the problem
(understanding the problem is half the solution)

e Starting small and simple
e Keeping it small and simple

Malotaux - Embedded 2010

-

_

Growing size of Embedded Software

e Size of software in a TV-set grows exponentially
e I’m hardly impressed

e Using libraries of unknown quality

Malotaux - Embedded 2010

57

-

_

Start small, keep it small

e ‘Trying’ large program doesn’t work

e Do small steps
e Skeleton
e Thin tread
e Small tree

e Keep it as small and simple as possible

Malotaux - Embedded 2010

58

-

_

Looking at the whole

e Designers often focus on their sub-system

e Risk of sub-optimizing in stead of optimizing the whole
system

Malotaux - Embedded 2010

59

4 2
Systems Engineering

e Other Engineers (?)
* Silo thinking
Sub-optimizing
Gold plating (hobbies)
Little attention to interfaces
Projects are always multidisciplinary

o Systems Engineers
e Multi-dimensional thinking
e Optimizing design decisions over all dimensions
e Whole life-cycle (cradle to cradle)

e Balancing requirements
¢ Including delivery time
_ e All disciplines — interdisciplinary)

Malotaux - Embedded 2010 60

4)
Multidisciplinary <> Interdisciplinary

e Tension between
e Technologically possible
e Economically profitable
e Socially and psychologically acceptable
e All kinds of disciplines needed for a good solution

e Multidisciplinary
e Many disciplines work in the project
e Optimize solution in their own domain

e Interdisciplinary
e Many disciplines work together in the project
e Overall-optimizing
e First developing the problem, before developing the solution,
before implementing the solution

o J

Malotaux - Embedded 2010 61

Types of Systems Engineering

Type V

e Can define the problem and then determine what needs to be

done to implement an optimal solution

Type IV

e Can define the problem

Type Il

e Can be given the problem and then determine what needs to be

done to implement an optimal solution

Type ll

e Can be told what needs to be done to implement a solution and

can work out how to do it

Type | (apprentices)

e Can be told how to implement a solution and can then do it

ref Joe Kasser

~

Malotaux - Embedded 2010

62

-

_

We need sufficient understanding

e Electronics

e Software

e Mechanics

e Aerodynamics

 Interfacing

e Acknowledge that there is a lot we don’t know (yet)

e How to find out what we don’t know

e Where to find and how to learn what we should know

e We must learn to be Type V Systems Engineers

Malotaux - Embedded 2010

63

-

_

Reducing complexity

o Systematically understanding all parts of the system
o Relationship drawings
o Schematic drawings
o Geometric drawings
e DesignLog
o Software architecture
e Flow diagrams
o State diagrams
e Brainstorm
e Discussion
e Review

Malotaux - Embedded 2010

64

-

_

Understanding the relationships

sub-sub-

system

sub-sub-

s!stem

sub-sub-

system

sub-sub-

system

sub-sub-

szstem

sub-sub-

sub-sub-

system

sub-sub-

s!stem

sub-sub-

system

system

sub-
system

sub-sub-

system

sub-sub-

s!stem

sub-sub-

system

Malotaux - Embedded 2010

65

-

_

Drawings and diagrams

e Diagrams must be ‘immediately’ clear

e If not, they are arisk

Malotaux - Embedded 2010

66

-

\

Is this clear?

= : Taping s Dz of ¥ruterials Track: Productioz
l Schechile Lewrel z
111
Flacanent
beds Slag ladle
Slag bed
1l : Liquid hlethl
L 111
Tapping indo
5
Iiatal ladle lag
$lag lalle
flaghed o
i 113 .
e -
Slag Ludle
¥
Elaz
e * 115
Liquid + | | Transpent e
114 Slag
.| Refnenent flaghed
“ ¥
Limuid Metal 116
Ligmid Dletal Castimg
* S01id hletal
Fefiried hletal —»
Trareport Systern Tapping Operators Crare Trareport Systern ¥

Malotaux - Embedded 2010

67

4 N

Development project sub-process
source docs

rules
standards
spelling/
entry syntax individual inspection gate
criteria check checklist checklists criteria
y
start Work checked inspected accepted
Entry |—> ok Activity [— roduct Check |[— work Inspect |—> work Gate |—> work —>
P product \ product product
\
J(_/ l/ /ﬂ \)rejected \) .
time time] ‘\ work rejgcted
size process defects /o product project
estimates improvement
proposals
(rules/ PIPs from
standards/ P N other phases
checklists] <——-—____~ N
criteria) - N defects from

- N

other phases

== Inspection process

checked Brain- Follow inspected
—> work Entry Kick-off Checking Logging . Edit Exit [—> work —>
storming up
product L L L ll L product

cautesl J’

time time

time time

defects defects impr_‘ovement
ideas

© 2000 N R Malotaux - Consultancy file: http://www.malotaux.nl/nrm/pdf/subprocess.pdf

time time

N J

Malotaux - Embedded 2010 68

-

\

Flowgrams

Installed in car

f_

No +12V power
to Micro?

|

Micro starts
running

t—

Switch
Power1 off

|

Set Power2 timer
to 5 min

l

Power2Flag off

1

Command from
Jornada?

l

Question ——> If True

(running on
battery)

|

No Key-off to
< Key-on
transition?

L

Sends wake-up
message to
Jornada

L]
-

Power2 timer
not done?

|

Power2Flag
off?

l

Set Power2 timer
to 5 min

|

Power2Flag off

If False Notation
principle]
Values set by
USBY command
J ’ L
Key Shy upon)
Timeout? Key Offy < HKeyoff’
I |
4 Sby upon
Jornada Jo);napda No Jornada
Timeout? N message?
Timeout?
y
USBY command? ——» _ SWitch
L Powerl on
SBY message?
Execute other
message
Power2Flag
on?
Powerlon? ——— |
Set Power2 timer Keyon? —]
to 55 min l
l Power2 off Power2 on
Power2Flag on

Malotaux - Embedded 2010

69

\

State Machines

Init Set Restarts Set Powers Set Resets Set InitialDelay
—_—> PCIQ PCInit3 >\ PCInit4
\ / /"k
é0(\'3
o
> Reset pulse
N
o’\éo
]
ot
it e Resets done ~<——InitialDelay done PCWait
Power |
.) Set Resets
Set PowerPulse Set ResetPulse) N\
Init | Init
Set Powers Restart2 _—7 Active3 |
e
Q o (50 J Lo}
5 Not PCRecei 'lmoew Set Restarts %
4 <~ Restartpggy, 0 and g
E lay done and 14
2 Restarts not O
o done ot
/ 4 "~ PCReceiveq
J t\’CReC \Jdoﬂe
@ Set 24nhrDelay WO e e
— p\es\?’“ w15 O
5’) e \\ / a“dp\es\a
qy*? \&’ \ Set RestartDelay
. Init Dead | StandAlone or
\ NoPCWatch\
/ \ 4 P— /
i A Set 24hrDelay
h [n ‘
PC Dead PCReceived > Active0 |
AN 4

State diagram PC watchdog process Set Restarts

Malotaux - Embedded 2010

70

-

_

Where are the risks ?

e Everywhere!

e Hardware
e Timing
e Voltages
e Currents
e Worst case

e Software
e Architecture
e Design
e Operating System
e Asynchronous events

Malotaux - Embedded 2010

71

Sunny Scenario ?

e 20% of the software is there to make the computer
do what it should do

e 80% of the software is there to make the computer
not do what it should not do

e Did we define the 80% part properly ?

_

Malotaux - Embedded 2010

Never more than one place

Code should be at one place and one place only
e Data should be at one place and one place only
e Object Oriented design

* No copy - paste

e Year 2000 problem would have been avoided

_

Malotaux - Embedded 2010

-

_

Basic Structure of Embedded System

Program

| 1
| 1

Memory

Malotaux

- Embedded 2010

74

-

_

Types of memory

e ROM
e PROM
e EPROM
e FLASH
e EEPROM
 FRAM

e RAM
e Static
e Dynamic
e Serial
e With battery

Malotaux - Embedded 2010

75

-

_

Compilers

e Do you know what your compiler does to your
software?

e Versions of the compilers
e Optimizers
e Atomic expressions

e Interrupt latency if compiler makes atomic sets

Malotaux - Embedded 2010

76

-

_

RTOS - Real Time Operating System

e Organizes concurrent processes

e Event-driven switches tasks only when an event of
higher priority needs service

e Time-sharing switches tasks on a regular clock
interrupt, and on events

Malotaux - Embedded 2010

77

4 N
Response times

e Slow
 Nospecifieddeadlines
e Most PC software
e Wasting our time

e Interactive
e Adequate deadlines
e Productive business software
e Good CAD systems

e Softreal time
e Almost always on time
e Audio/Video encoding/decoding

e Hard real time
e Always on time
e Embedded control loops

o

Malotaux - Embedded 2010 78

_

Issues with processes in Embedded Software

Concurrency
e Many concurrent (possibly interacting) processes

Deadlock

e Two processes waiting for each other
e E.g. higher priority process waiting for lower priority process

e Causes a (sub)system to stop functioning

Livelock

e Two processes infinitely communicating with each other
preventing other subsystems access

Race condition
e If the outcome of two signals depends on the order of these
signals arriving

Determinism
e Predictability of cause and effect
e We must know why it works

Malotaux - Embedded 2010

79

-
Memory allocation

e Static memory allocation
e You know where your memory is

e Automatic memory allocation
o Stack (LIFO: Last-in - First-out)

e Dynamic memory allocation
e You ask for memory and get it, if it’s available
e If it’s not available, you’re stuck
e Creates holes in memory: memory eventually gets exhausted !

_

Malotaux - Embedded 2010

80

4)
Memory leak

e Memory is claimed at start and not returned at exit

e Example: hand-held device for shopping
e Device didn’t really need dynamically allocatable memory
Reliability: MTBF ~ 20 sec
Availability: zero
Boot-delay: too long
After solving all memory leaks: Device simply worked

o J

Malotaux - Embedded 2010 81

-

_

Garbage collection

e If the program doesn’t clean up it’s own garbage ...
e Clean-up of unused memory

e Used by Java, C(# and many other languages

e Not used by C, C++ (that’s why most embedded systems use C or C++)
e Reallocation to remove gaps

 Non-deterministic
e Various approaches
e How long does it take?
e Whenis it done?
e Isitreliable?

e If reliability means knowing why it is reliable ...

Malotaux - Embedded 2010

82

-

\

Time-Slice Hard Real Time OS

2.5ms
slice

0

O 00 N O 1 A W N =

N S G O
0O O VT A W N =~ O

_
O

Actions

Reserved
Reserved

Reserved

Handle outputs

Read inputs and filter temperature
Prepare I2C to monitor (see steps 15~18)
Standby process

Degauss process

LED’s

Start-up counters and blank process

PC watchdog process

Hour counters process

Protocol command handler 1
Protocol command handler 2
Protocol command handler 3

[’°C message to monitor1or5

[2’C message to monitor 2 or 6

[2C message to monitor 3 or 7

[2’C message to monitor 4 or 8
Keep writing to EEPROM (BusyEE)

Malotaux - Embedded 2010

83

20 TimeSlice of 2.5 msec = 50 msec

25'325 Actions SOf;ci\l/Zare mez?srllj?‘leorien . EEPROM access
0 Reserved timerhnd.asm | Temperature |Writing to EEPROM (if started at step 19)
1 Reserved timerhnd.asm | Power down |Still writing to EEPROM (if 10msec write)
2 Reserved timerhnd.asm | Power down |Still writing to EEPROM (if 10msec write)
3 Handle outputs outputs.asm | Power down [Finishing writing to EEPROM
4 Read inputs and filter temperature tempfil.asm | Power down |Read from EEPROM possible
5 Prepare I2C to monitor (see steps 15~18) monitor.asm | Power down |Read from EEPROM possible
6 Standby process standby.asm [Power down [Read from EEPROM possible
7 Degauss process degauss.asm | Power down |Read from EEPROM possible
8 LED’s leds.asm Power down |Read from EEPROM possible
9 Start-up counters and blank process sutimrs.asm | Power down |[Read from EEPROM possible
10 PC watchdog process pcw.asm Power down |Read from EEPROM possible
1 Hour counters process hours.asm Power down |Read from EEPROM possible
12 Protocol command handler 1 process.asm | Power down [May read from EEPROM for command
13 Protocol command handler 2 process.asm | Power down [May read from EEPROM for command
14 Protocol command handler 3 process.asm | Power down |May write to EEPROM for command
15 [2C message to monitor 1 or5 monitor.asm | Power down |Writing to EEPROM (if started at step 14)
16 [2C message to monitor 2 or 6 monitor.asm | Power down |Still writing to EEPROM (if 10msec write)
17 [>°C message to monitor 3 or 7 monitor.asm | Power down |Still writing to EEPROM (if 1omsec write)
18 [>°C message to monitor 4 or 8 monitor.asm [Power down |Finishing writing to EEPROM
19 Keep writing to EEPROM (BusyEE) process.asm | Power down |May write to EEPROM if not yet done

Malotaux - Embedded 2010

84

Prog 0 Prog 1 [Prog 2] Progn Prog 0
r Y - - -~
o = — T e 0 = = = o =
- o = Bl w0 o m - @
k=] =3 o cllo oc o e =] g
\ ¥y
main main main

main main | main main | /|
r

&

o
-
>
e
o
.
o

l«—— OS tick time—»

o)

85

Malotaux - Embedded 2010

4 N
Interrupts

e Interrupt latency - time from interrupt to start of ISR

e Takes time to finish the current instruction
e From one to many clock-cycles (eg multiply!)

e Takes time to save the current context

e Takes time if interrupts are disabled
e By software to protect non-atomic instructions
e By other running interrupt

¢ Interrupts introduce non-determinism (unpredictability)

e So we must use them very carefully

o J

Malotaux - Embedded 2010 86

-

o

SH7125 Exceptions

Malotaux - Embedded 2010

87

-

_

Why do we need a watchdog?

e Design errors (?)
e Software errors (?)

e Hardware errors (interference, wear)
e Radiation from space
e Radiation from adjacent sources
e CE-EMCdirective
* Power-sequences

e Count the number of watchdog restarts for analysis
e Should stay at zero

Malotaux - Embedded 2010

88

-

_

V+
Watchdog

Resets the system unless ...

—— > Reset
<—1 Quiet

super- — s NV
visor uC

e Regularly kicking the dog before it barks

If the system doesn’t behave as it should

e Making sure the watchdog is and keeps enabled

e Can only set at first few instructions
e Can only reset with specific instruction

e Only hardware isn’t enough

e Brown-out

X

e What happens if NMI at non-atomic code ?

Malotaux - Embedded 2010

89

Software watchdog issues

What if the program runs outside program space?

e Within memory

e empty ROM doesn’t exist
e random RAM
e memory mapped I/O — can unsafe things happen?

e QOutside memory

e Did the software run in the expected order?
e Check that we run the program in the expected order

_

Malotaux - Embedded 2010

-

_

Debugging
e Don’t!
e First find a theory how the phenomenon could happen
e Check the theory
e Example EEPROM losing data CS —>
CLK —| &
O
DI—> @
DO <—

Malotaux - Embedded 2010

o1

-

Example: EEPROM parameter accidentally erased !

e Production since several years

e Factory calibration parameter disappears from EEPROM
e Only read once upon start of program

e How can this happen?

e READ: 110000000 Reset — Start READ 1
Reset again— Start READ 110000000
* ERASE: 111000000 Result ERASE 1110000000

~

)

Malotaux - Embedded 2010

92

_

Malotaux - Embedded 2010

93

_

Malotaux - Embedded 2010

94

-

_

Measuring or testing

e |If one product tests OK, the next product may be not OK

e |t doesn’t prove that all repeat products will work the
same

e This has to be proven by design

Malotaux - Embedded 2010

95

-

_

Interfaces

e Digital input [output
e Analog input /[output
o Timer/counter (measuring frequency)

e Capture (measuring time)

Malotaux - Embedded 2010

96

-

_

All components are imprecise

Voltage levels
e Current levels

e Timing

e What is worst case?
e Over temperature
e Over life time
e Over voltage range

Malotaux - Embedded 2010

97

-

Reading X and Y coordinates

Y-coordinate

I

X-coordinate

e More general: reading two or more values (not) at the
same time

_

Malotaux - Embedded 2010

Non atomic

e Overflow Hardware counter oxff - 0x00 — IRQ
 |RQ — Increment Software counter-hi

e If reading the counter value:
e Read HWC: oxff
¢ (unaware of IRQ) read SWC-hi: 0xo1 (incremented by IRQ)
e Weread: oxoiff in stead of oxooff

¢ How can we solve this ?

e Such issues should be solved at only one place

_

Malotaux - Embedded 2010

)11

-

Serial data stream

0D0011011000111011011001101001010101101010100101011011010101001101

|O1¢

Malotaux - Embedded 2010

100

-

o

Asynchronous communication

Malotaux - Embedded 2010

101

-

o

Asynchronous Clock Synchronization

Malotaux - Embedded 2010

102

-

o

Synchronous communication

Malotaux - Embedded 2010

103

-

_

A/D conversion

Malotaux - Embedded 2010

104

-

\

Worst
case
values

Test

Malotaux - Embedded 2010

Item Symbol Min. Typ. Max. Unit Conditions
Input low RES, STBY, Wi 0.3 — Vee=01 W
voltage MD2 to MDO,

TRST, TCK,

TMS, TDI,

EMLE, VBUS,

UBPM, FWE**

EXTAL, NMI, 0.3 — Veex02 W

poris 1, 3, 4,

7,9, and

Ao G
Output high All output pins Wan Vee—-05 — — W loy = =200 pA
voltage _

Vee—1.0 — — A low = =1 mA

Output low Al output pins VoL — — 04 W loL = 0.8 mA
voltage
Input leakage RES, VBUS, |a| — — 1.0 pA Vin=0510
curment UBPM, STBY, Voo —05Y

NMI, EMLE,

MD2 to MDO,

FWE**,

poris 4, 9
Three-state Ports 1,3,7, | ks — — 1.0 HA Vin=0510
leakage and Ato G Veo—05V
current (off
state)
Input pull-up Ports AtToE -1 10 — 300 HA Vin=0V
MOS cumrent TDI, TCK

TMS, TRST
Input RES, NMI Cin — — 30 pF Vin=0V
capacitance f=1MHz

All input pins — — 15 pF Ta=25°C

other than

RES, NMI
Current Normal lec* — 22 35 mA =16 MHz
|:1i55i;:1.atimn*1 operation Vec=33ViWVec =36V

(USB halts) — 3 50 mA T=24 MHz

Ve =33VVee=36Y

5

_

Timing

In——D Q

CP

—> Qut

cp— 1

Malotaux - Embedded 2010

106

4)
Metastability

o Digital samples

o If data changes exactly when the sample is taken
e Set-up and Hold times

e Metastability

e Multi-bit issues

o J

Malotaux - Embedded 2010 107

-

Digital debounce

In——{D

CP

In /

Q,
j—) Out
Q1

Q - /

Q.

Out

otaux - Embedded 2010

-
Flash programming

\

ltem Symbol Min. Typ. Max. Unit
Programming time*! == ** tr — 10 200 ms/128 bytes
Erase time*' **** te — 50 1000 ms/block
Reprogramming count Ny=r 100*° 100007 — Times

Data retention time*® torp 10 — — Years

Malotaux - Embedded 2010

109

_

Malotaux - Embedded 2010

110

-

_

Timer/Counter
Preset
value
Pulses—{ Timer }—>Overﬂow

Malotaux - Embedded 2010

111

-

_

Pulse capture

Malotaux - Embedded 2010

112

Schmitt-trigger

Malotaux - Embedded 2010

-
Delay or filter

_

1,0 ‘E__T
(Il
,I
]
0,8 1 /
]
I' / \
] Y/
0,6 1 /
]
]
]
' /
0,4 "
/ \\ \
0,2 N \
N
\\\‘ \
0,0 =
o/RC 1/RC 2/RC 3/RC 4/RC
—___ C

GND

5/RC

Malotaux - Embedded 2010

14

4 N

1,0 e ', e /7&
Debounce /7/
0,8 g /
; /)
'I' / /

0,6
/ /
]
)
)
0,4 l'
/ /
[/
[/

0,2

0,0 —
o/RC 1/RC 2/RC 3/RC 4/RC 5/RC

R/10

v

| |
|l
(@]

GND

o)

Malotaux - Embedded 2010 115

4 M
Handshaking

* | have something to send
e OK, you may send it

e Sending data

e |received the data OK

e End of conversation

o J

Malotaux - Embedded 2010 116

-

o

Time Triggered Architecture

Malotaux - Embedded 2010

17

Reliable?

e Don’t believe anything | say
e You may do anything
e As long as you know that it works, and why it works

e Assuming that your (or worse: their) design works, is
dangerous

e Assume you (and them) probably made mistakes
e Don’t trust yourself, use Reviews and Inspections
e Assume that you don’t know everything

¢ Know how to find it out

Malotaux - Embedded 2010

-

o

Digital signal processing principle

Malotaux - Embedded 2010

119

4 M
Digital Signal Processor - IIR or FIR filter

o)

Malotaux - Embedded 2010 120

-

_

Possible exercise

e Nano-satellite
e Powered only by solar panels (no battery)

e Two processors having to work together

Malotaux - Embedded 2010

121

-

_

Seminar Program 7 ~ 11 June 2010 - every morning 9:00 - 12:30

Monday: General introduction Reliable Embedded Systems
e What causes failure and what can we do about it

Tuesday: Requirements and Design
e What are we supposed to accomplish
e How to select the best way to do that
e How to document for better understanding

Wednesday: Planning
e How to make sure we’ll be ready on time
e You will learn how to accomplish much more in less time

Thursday: Testing, Reviews and Inspections
e Learning to find our mistakes early and never make them again

Friday Master Class: actually organizing our project
e Using what we learnt to set up our project for success

~

Malotaux - Embedded 2010

122

