

Niels Malotaux

deliverytaskstasks

test test

taskstasks deliverytasks

Niels Malotaux: Optimizing the Contribution of Testing to Project Success 1

1 Introduction
We know all the stories about failed and partly failed
projects, only about one third of the projects
delivering according to their original goal [1].
Apparently, despite all the efforts for doing a good
job, too many defects are generated by developers,
and too many remain undiscovered by testers, causing
still too many problems to be experienced by users. It
seems that people are taking this state of affairs for
granted, accepting it as a nature of software
development. A solution is mostly sought in technical
means like process descriptions, metrics and tools. If
this really would have helped, it should have shown by
now.
Oddly enough, there is a lot of knowledge about how
to significantly reduce the generation and
proliferation of defects and deliver the right solution
quicker. Still, this knowledge is ignored in the practice
of many software development organizations. In
papers and in actual projects I’ve observed that the
time spent on testing and repairing (some people call
this debugging) is quoted as being 30 to 80% of the
total project time. That’s a large budget and provides
excellent room for a lot of savings.
In 2004, I published a booklet: How Quality is Assured
by Evolutionary Methods [2], describing practical
implementation details of how to organize projects
using this knowledge, making the project a success. In
an earlier booklet: Evolutionary Project Management
Methods [3], I described issues to be solved with these
methods and my first practical experiences with the
approach. Tom Gilb published already in 1988 about
these methods [4].

In this booklet we’ll extend the Evo methods to the
testing process, in order to optimize the contribution
of testing to project success.

Important ingredients for success are: a change in
attitude, taking the Goal seriously, which includes
working towards defect-free results, focusing on
prevention rather than repair, and constantly learning
how to do things better.

2 The Goal
Let’s define as the main goal of our software
development efforts:

Providing the customer with what he needs,
at the time he needs it,
to be satisfied, and to be more successful
than he was without it …

If the customer is not satisfied, he may not want to
pay for our efforts. If he is not successful, he cannot
pay. If he is not more successful than he already was,
why should he invest in our work anyway? Of course
we have to add that what we do in a project is:

… constrained by what the customer can afford
and what we mutually, beneficially and satisfactorily
can deliver in a reasonable period of time.

Furthermore, let’s define a Defect as:
The cause of a problem
experienced by stakeholders of the system

If there are no defects, we’ll have achieved our goal. If
there are defects, we failed.

3 The knowledge
Important ingredients for significantly reducing the
generation and proliferation of defects and delivering
the right solution quicker are:
• Clear Goal: If we have a clear goal for our project,

we can focus on achieving that goal. If
management does not set the clear goal, we
should set the goal ourselves

• Prevention attitude: Preventing defects is more
effective and efficient than injecting-finding-fixing,
although it needs a specific attitude that usually
doesn’t come naturally

• Continuous Learning: If we organize projects in
very short Plan-Do-Check-Act (PDCA) cycles,
constantly selecting only the most important
things to work on, we will most quickly learn what
the real requirements are and how we can most
effectively and efficiently realize these
requirements. We spot problems quicker, allowing
us more time to do something about them.
Actively learning is sped up by expressly applying
the Check and Act phases of PDCA

Evolutionary Project Management (Evo for short)
uses this knowledge to the full, combining Project-,
Requirements- and Risk-Management into Result
Management. The essence of Evo is actively,
deliberately, rapidly and frequently going through the
PDCA cycle, for the product, the project and the
process, constantly reprioritizing the order of what
we do based on Return on Investment (ROI), and
highest value first. In my experience as project
manager and as project coach, I observed that those
projects who seriously apply the Evo approach, are
routinely successful on time, or earlier [5].

 www.malotaux.nl/booklets 2

Evo is not only iterative (using multiple cycles) and
incremental (we break the work into small parts), like
many similar Agile approaches, but above all Evo is
about learning. We proactively anticipate problems
before they occur and work to prevent them. We may
not be able to prevent all the problems, but if we
prevent most of them, we have a lot more time to
cope with the few problems that slip through.

4 Something is not right
Satisfying the customer and making him more
successful implies that the software we deliver should
show no defects. So, all we have to do is delivering a
result with no defects. As long as a lot of software is
delivered with defects and late (which I consider a
defect as well), apparently something is not right.
Customers are also to blame, because they keep
paying when the software is not delivered as agreed.
If they would refuse to pay, the problem could have
been solved long ago. One problem here is that it
often is not obvious what was agreed. However, as
this is a known problem, there is no excuse if this
problem is not solved within the project, well before
the end of the project.

5 The problem with bugs
In a conventional software development process,
people develop a lot of software with a lot of defects,
which some people call bugs, and then enter the
debugging phase: testers testing the software and
developers repairing the bugs.
Bugs are so important that they are even counted. We
keep a database of the number of bugs we found in
previous projects to know how many bugs we should
expect in the next project. Software without bugs is
even considered suspect. As long as we put bugs in
the centre of the testing focus, there will be bugs.
Bugs are normal. They are needed. What should we
do if there were no bugs anymore?
This way, we endorse the injection of bugs. But, does
this have anything to do with our goal: making sure
that the customer will not encounter any problem?
Personally, I dislike the word bug. To me, it refers to a
little creature creeping into the software, causing
trouble beyond our control. In reality, however,
people make mistakes and thus cause defects. Using
the word bug, subconsciously defers responsibility for
making the mistake. In order to prevent defects,
however, we have to actively take responsibility for
our mistakes.

6 Defects found are symptoms
Many defects are symptoms of deeper lying problems.
Defect prevention seeks to find and analyse these

problems and doing something more fundamental
about them.
Simply repairing the apparent defects has several
drawbacks:
• Repair is usually done under pressure, so there is a

high risk of imperfect repair, with unexpected side
effects.

• Once a bandage has covered up the defect, we
think the problem is solved and we easily forget to
address the real cause. That’s a reason why so
many defects are still being repeated.

• Once we find the underlying real cause, of which
the defect is just a symptom, we’ll probably do a
more thorough redesign, making the repair of the
apparent defect redundant.

As prevention is better than cure, let’s move from
fixation-to-fix to attention-to-prevention.
Many mistakes have a repetitive character, because
they are a product of certain behaviour of people. If
we don’t deal with the root causes, we will keep
making the same mistakes over and over again.
Without feedback, we won’t even know. With quick
feedback, we can put the repetition immediately to a
halt.

7 Defects typically overlooked
We must not only test whether functions are correctly
implemented as documented in the requirements, but
also, a level higher, whether the requirements
adequately solve the needs of the customer according
to the goal. Typical defects that may be overlooked
are:

• Functions that won’t be used (superfluous
requirements, no Return on Investment)

• Nice things (added by programmers, usefulness
not checked, not required, not paid for)

• Missing quality levels (should have been in the
requirements)
e.g.: response time, security, maintainability,
usability, learnability

• Missing constraints (should have been in the
requirements)

• Unnecessary constraints (not required)
Another problem that may negatively affect our goal
is that many software projects end at “Hurray, it
works!” If our software is supposed to make the
customer more successful, our responsibility goes
further: we have to make sure that the increase in
success is going to happen. This awareness will
stimulate our understanding of quality requirements
like “learnability” and “usability”. Without it, these
requirements don’t have much meaning for
development. It’s a defect if success is not going to
happen.

Niels Malotaux: Optimizing the Contribution of Testing to Project Success 3

8 Is defect free software possible?
Most people think that defect free software is
impossible. This is probably caused by lack of
understanding about what defect free, or Zero
Defects, really means. Think of it as an asymptote
(Figure 1). We know that an asymptote never reaches
its target. However, if we put the bar at an acceptable
level of defects, we’ll asymptotically approach that
level. If we put the bar at zero defects, we can
asymptotically approach that level.

Philip Crosby writes [6]:
Conventional wisdom says that error is inevitable.
As long as the performance standard requires it,
then this self-fulfilling prophecy will come true.
Most people will say: People are humans and
humans make mistakes. And people do make
mistakes, particularly those who do not become
upset when they happen. Do people have a built-in
defect ratio? Mistakes are caused by two factors:
lack of knowledge and lack of attention. Lack of
attention is an attitude problem.

When Crosby first started to apply Zero Defects as
performance standard in 1961, the error rates dropped
40% almost immediately [6]. In my projects I’ve
observed similar effects.

Experience: No defects in the first two weeks of use
A QA person of a large banking and insurance
company I met in a SPIN metrics working group told
me that they got a new manager who told them that
from now on she expected that any software
delivered to the (internal) users would run defect free
for at least the first two weeks of use. He told me this
as if it were a good joke. I replied that I thought he
finally got a good manager, setting them a clear
requirement: “No defects in the first two weeks of
use.” Apparently this was a target they had never
contemplated before, nor achieved. Now they could
focus on how to achieve defect free software, instead
of counting function points and defects. Remember
that in accounting being one cent off is already a
capital offense, so defect free software should be a
normal expectation for a bank. Why wouldn’t it be for
any environment?

Zero Defects is a performance standard, set by
management. In Evo projects, even if management
does not provide us with this standard, we’ll assume it
as a standard for the project, because we know that it
will help us to conclude our project successfully in less
time.

9 Attitude
As long as we are convinced that defect free software
is impossible, we will keep producing defects, failing
our goal. As long as we are accepting defects, we are
endorsing defects. The more we talk about them, the
more normal they seem. It's a self-fulfilling prophecy.
It will perpetuate the problem. So, let’s challenge the
defect-cult and do something about it.
From now on, we don’t want to make mistakes any
more. We get upset if we make one. Feel the failure. If
we don't feel failure, we don’t learn. Then we work to
find a way not to make the mistake again. If a task is
finished we don’t hope it’s ok, we don’t think it’s ok,
no, we’ll be sure that there are no defects and we’ll be
genuinely surprised when there proves to be any
defect after all.
In my experience, this attitude immediately prevents
half of the defects being made. Because we are
humans, we can study how we operate
psychologically and use this knowledge to our
advantage. If we can prevent half of the defects
overnight, then we have a lot of time for investing in
more prevention, while still being more productive.
This attitude is a crucial element of successful
projects.

10 Plan-Do-Check-Act

I assume the Plan-Do-Check-Act (PDCA- or Deming-)
cycle [7] is well known (Figure 2, next page). Because
it’s such a crucial ingredient, I’ll shortly reiterate the
basic idea:
• We Plan what we want to accomplish and how we

think to accomplish it best
• We Do according to the plan
• We Check to observe whether the result from the

Do is according to the Plan
• We Act on our findings. If the result was good:

what can we do better. If the result was not so
good: how can we make it better. Act produces a
renewed strategy

zero defects

“acceptable
 level”in

je
ct

io
n

of
 d

ef
ec

ts
 →

time →
0

Figure 1: Zero Defects is an asymptote

 www.malotaux.nl/booklets 4

Experience: No more memory leaks
My first Evo project was a project where people had
been working for months on software for a hand-held
terminal. The developers were running in circles,
adding functions they couldn’t even test, because the
software crashed before they arrived at their newly
added function. The project was already late and
management was planning to kill the project. We got
six weeks to save it.
The first goal was to get stable software. After all,
adding any function if it crashes within a few minutes
of operation is of little use: the product cannot be
sold. I told the team to take away all functionality
except one very basic function and then to make it
stable. The planning was to get it stable in two weeks
and only then to add more functionality gradually to
get a useful product.
I still had other business to finish, and I returned to
the project two weeks later. I asked the team “Is it
stable?” The answer was: “We found many memory
leaks and solved them. Now it’s much stabler”. And
they were already adding new functionality. I said:
“Stop adding functionality. I want it stable, not almost
stable”. One week later, all memory leaks were solved
and stability was achieved. This was a bit of a weird
experience for the team: the software didn’t crash
anymore. Actually, in this system there was not even a
need for dynamically allocable memory and the whole
problem could have been avoided. But changing this
architectural decision wasn’t a viable option at this
stage anymore.
Now that the system was stable, they started adding
more functions. We got another six weeks to
complete the product. I made it very clear that I didn’t
want to see any more memory leaks. Actually that I
didn’t want to see any defects. The result was that the
testers suddenly found hardly any defect anymore
and from now on could check the correct functioning
of the device. At the end of the second phase of six
weeks, the project was successfully finished. The
product manager was happy with the result.
Conclusion: after I made it clear that I didn’t want to
see any defects, the team hardly produced any
defects. The few defects found were easy to trace and
repair. The change of attitude saved a lot of defects
and a lot of time. The team could spend most of its
time adding new functionality instead of fixing
defects. This was Zero Defects at work. Technical
knowledge was not the problem to these people:
once challenged, they quickly came up with tooling to
analyse the problem and solve it. The attitude was
what made the difference.

The key-ingredients are: planning before doing,
systematically checking and above all acting: doing
something differently. After all, if you don’t do things
differently, you shouldn’t expect a change in result.
In Evo we constantly go through multiple PDCA cycles,
deliberately adapting strategies in order to learn how
to do things better all the time, actively and purposely
speeding up the evolution of our knowledge.
As a driver for moving the evolution in the right
direction, we use Return on Investment (RoI): the
project invests time and other resources, and this
investment has to be regained in whatever way,
otherwise it’s just a hobby. So, we’ll have to
constantly be aware whether all our actions
contribute to the value of the result. Anything that
does not contribute value, we shouldn’t do.
Furthermore, in order to maximize the ROI, we have
to do the most important things first. In practice,
priorities change dynamically during the course of the
project, so we constantly reprioritize, based on what
we learnt so far. Every week we ask ourselves: “What
are the most important things to do? We shouldn’t
work on anything less important.” Note that priority is
moulded by many issues: customer issues, project
issues, technical issues, people issues, political issues
and many other issues.

11 How about Project Evaluations
Project Evaluations (also called Retrospectives, or
Post-Mortems - as if all projects die) are based on the
PDCA cycle as well. At the end of a project we
evaluate what went wrong and what went right.
Doing this only at the end of a project has several
drawbacks:
• We tend to forget what went wrong, especially if it

was a long time ago
• We put the results of the evaluation in a write-only

memory: do we really remember to check the
evaluation report at the very moment we need the
analysis in the next project? Note that this is
typically one full project duration after the fact

Plan
What do we

want to know
or to do

Do
Carry out plan

Check
Is Result
according
to plan?

Act
What are we
going to do
differently

1

23

4

Figure 2: PDCA or Deming cycle

Niels Malotaux: Optimizing the Contribution of Testing to Project Success 5

• The evaluations are of no use for the project just
finished and being evaluated

• Because people feel these drawbacks, they tend
to postpone or forget to evaluate. After all, they
are already busy with the next project, after the
delay of the previous project

In short: the principle is good, but the
implementation is not tuned to the human time-
constant.
In Evo, we evaluate weekly (in reality it gradually
becomes a way-of-life), using PDCA cycles, and now
this starts to bear fruit (Figure 3):
• Not so much happens in one week, so there is not

so much to evaluate
• It’s more likely that we remember the issues of

the past five days
• Because we most likely will be working on the

same kind of things during the following week, we
can immediately use the new strategy, based on
our analysis

• One week later we can check whether our new
strategy was better or not, and refine

• Because we immediately apply the new strategy, it
naturally is becoming our new way of working

• The current project benefits immediately from
what we found and improved.

So, evaluations are good, but they must be tuned to
the right cycle time to make them really useful. The
same applies to testing, as this is also a type of
evaluation.

12 Current Evo Testing
Conventionally, a lot of testing is still executed in
Waterfall mode, after the Code Complete milestone.
I have difficulty understanding this “Code Complete”,
while apparently the code is not complete, witness
the planned “debugging” phase after this milestone.
Evo projects do not need a separate debugging phase
and hardly need repair after delivery. If code is
complete, it is complete. Anything is only ready if it is
completely done, not to worry about it anymore. That
includes: no defects. I know we are human and not
perfect, but remember the importance of attitude: we
want to be perfect (note that perfection means:
‘exactly as it should be’. It does not mean: ‘gold
plating’).
Because we regularly deliver results, testers can test

these intermediate results (Figure 4). They feedback
their findings, which we will use for prevention or
optimization. Most issues that are not caught by the
testers (I suppose testers are human as well) may be
found in subsequent deliveries. This way, most of any
undiscovered defects will be caught before the final
delivery and, more importantly, be exploited for
prevention of further injection of similar defects.
Because all people in the project aim for Zero Defects
delivery, the developers and testers work together in
their quest for perfection.

13 Further improvement
To further improve the results of the projects, we can
extend the Evo techniques to the testing process and
exploit the PDCA paradigm even further:
• Testers focus on a clear goal. Finding defects is not

the goal. After all, we don’t want defects. Any
defects found are only a means to achieve the real
goal: the success of the project

• Testers will select and use any method appropriate
for optimum feedback to development, be it
testing, review or inspection, or whatever more
they come up with

• Testers check work in progress even before it is
delivered to them, feeding back issues found,
helping the developers preventing producing
similar issues for the remainder of their work
“Can I check some piece of what you are working
on now?” “But I’m not yet ready!” “Doesn’t
matter. Give me what you have. I’ll tell you what I

project project

st
ar

t

ev
al

ua
tio

n

st
ar

t

ev
al

ua
tio

n

one project duration

task
cycle

project

st
ar

t

en
d

st
ar

t

en
d

ev
al

ua
tio

n
ev

al
ua

tio
n

ev
al

ua
tio

n

task
cycle

task
cycle

Project evaluation

Result evaluations
Figure 3: Project and Result evaluations

measure
quality

measure
quality

measure
quality

measure
quality

measure
quality

final
validation

delivery delivery delivery delivery delivery
zero
defect
delivery

evolutionary project track

Figure 4: Testing of early deliveries helps the developers to get ready for zero-defect final delivery

 www.malotaux.nl/booklets 6

find, if I find anything”. Testers have a
different view, seeing things the
developer doesn’t see. Developers don’t
naturally volunteer to have their
intermediate work checked. Not because
they don’t like to be checked, but
because their attention is elsewhere.
Testers can help by asking. Initially the
developers may seem a little surprised,
but this will soon fade

• Similarly, testers can solve a typical
problem with planning reviews and
inspections. Developers are not against
reviews and inspections, because they
very well understand the value. They
have trouble, however, planning them in
between of their design work, which
consumes their attention more. If we include the
testers in the process, the testers will recognize
when which types of review, inspections or tests
are needed and organize these accordingly. This is
a natural part of their work helping the developers
to minimize rework by minimizing the injection of
defects and minimizing the time slipped defects
stay in the system

• In general: organizing testing the Evo way means
entangling the testing process more intimately
with the development process

14 Cycles in Evo
In the Evo development process, we use several
learning cycles:
• The TaskCycle [9] is used for organizing the work,

optimizing estimation, planning and tracking. We
constantly check whether we are doing the right
things in the right order to the right level of detail.
We optimize the work effectiveness and efficiency.
TaskCycles never take more than one week

• The DeliveryCycle [10] is used for optimizing the
requirements and checking the assumptions. We
constantly check whether we are moving to the
right product results. DeliveryCycles focus the
work organized in TaskCycles. DeliveryCycles
normally take not more than two weeks.

• TimeLine [11] is used to keep control over the
project duration. We optimize the order of
DeliveryCycles in such a way that we approach the
product result in the shortest time, with as little
rework as possible.

During these cycles we are constantly optimizing:
• The product [12]: how to arrive at the best product

(according to the goal).
• The project [13]: how to arrive at this product most

effectively and efficiently.

• The process [14]: finding ways to do it even better.
Learning from other methods and absorbing those
methods that work better, shelving those methods
that currently work less effectively

If we do this well, by definition, there is no better way.

15 Evo cycles for testing
Extending Evo to testing adds cycles for feedback
from testing to development, as well as cycles for
organizing and optimizing the testing activities
themselves (Figure 5):
• Testers organize their work in weekly, or even

shorter TaskCycles
• The DeliveryCycle of the testers is the Test-

feedback cycle: in very short cycles testers take
intermediate results from developers, check for
defects in all varieties and feedback optimizing
information to the developers, while the
developers are still working on the same results.
This way the developers can avoid injecting defects
in the remainder of their work, while immediately
checking out their prevention ideas in reality

• The Testers use their own TimeLine, synchronized
with the development TimeLine, to control that
they plan the right things at the right time, in the
right order, to the right level of detail during the
course of the project and that they conclude their
work in sync with development

During these cycles the testers are constantly
optimizing:
• The product: how to arrive at the most effective

product.
Remember that their product goal is: providing
their customer, in this case the developers, with
what they need, at the time they need it, to be
satisfied, and to be more successful than they were
without it

Figure 5: Testing intimately intertwined with development

Niels Malotaux: Optimizing the Contribution of Testing to Project Success 7

• The project: how to arrive at this product most
effectively and efficiently.
This is optimizing in which order they should do
which activities to arrive most efficiently at their
result

• The process: finding ways to do it better. Learning
from other methods and absorbing those methods
that work better, shelving those methods that
currently work less effectively

Testers are part of the project and participate in the
weekly 3-step procedure [15] using about 20 minutes
per step:
1. Individual preparation
2. 1-to-1’s: Modulation with and coaching by Project

Management
3. Team meeting: Synchronization and synergy with

the team
Project Management in step 2 is now any
combination, as appropriate, of the following
functions:
• The Project Manager or Project Leader, for the

project issues
• The Architect, for the product issues
• The Test Manager, for the testing issues
There can be only one captain on the ship, so the final
word is to the person who acts as Project Manager,
although he should better listen to the advice of the
others.
Testers participate in requirements discussions. They
communicate with developers in the unplannable time
[16], or if more time is needed, they plan tasks for
interaction with developers. If the priority of an issue
is too high to wait for the next TaskCycle, the
interrupt procedure [17] will be used. If something is
unclear, an Analysis Task [18] will be planned. The
Prevention Potential of issues found is an important
factor in the prioritizing process.
In the team meeting testers see what the developers
will be working on in the coming week and they
synchronize with that work. There is no ambiguity
anymore about which requirements can be tested and
to which degree, because the testers follow
development, and they design their contribution to
assist the project optimally for success.
In Evo Testing, we don’t wait until something is
thrown at us. We actively take responsibility.
Prevention doesn’t mean sitting waiting for the
developers. It means to decide with the developers
how to work towards the defect free result together.
Developers doing a small step. Testers checking the
result and feeding back any imperfections before
more imperfections are generated, closing the very
short feedback loop. Developers and testers quickly
finding a way of optimizing their cooperation. It’s

important for the whole team to keep helping each
other to remind that we don’t want to repair defects,
because repair costs more. If there are no defects, we
don’t have to repair them, allowing more time for
productive work.
Doesn’t this process take a lot of time? No. My
experience with many projects shows that it saves
time, projects successfully finishing well before
expected. At the start it takes some more time. The
attitude, however, results in fewer defects and as
soon as we focus on prevention rather than
continuous injection-finding-fixing, we soon decrease
the number of injected defects considerably and we
don’t waste time on all those defects anymore.

16 Database for Change Requests and Problem
Reports and Risk Issues

Most projects already use some form of database to
collect defects reported (Problem Report/PR:
development pays) and proposed changes in
requirements (Change Request/CR: customer pays).

If we are seriously in Prevention Mode, striving for
Zero Defects, we should also collect Risk Issues (RI):
issues which better be resolved before culminating
into CR’s or PR’s.
With the emphasis shifted from repair to prevention,
this database will, for every RI/CR/PR, have to provide
additional space for the collection of data to
specifically support the prevention process, like:
• Follow-up status
• When and where found
• Where caused and root cause
• Where should it have been found earlier
• Why didn’t we find it earlier
• Prevention plan
• Analysis task defined and put on the Candidate

Task List [19]
• Prevention task(s) defined and put on the

Candidate Task List
• Check lists updated for finding this issue easier, in

case prevention doesn’t work yet
Analysis tasks may be needed to sort out the details.
The analysis and repair tasks are put on the Candidate
Task List and will, like all other candidate tasks, be
handled when their time has come: if nothing else is
more important. Analysis tasks and repair tasks should
be separated, because analysis usually has priority
over repair. We better first stop the leak, to make sure
that not more of the same type of defect is injected.

17 How about metrics?
In Evo, the time to complete a task is estimated as a
TimeBox [20], within which the task will be 100% done.
This eliminates the need for tracking considerably. The

 www.malotaux.nl/booklets 8

estimate is used during the execution of the task to
make sure that we complete the task on time. We
experienced that people can quite well estimate the
time needed for tasks, if we are really serious about
time.
Note that exact task estimates are not required.
Planning at least 5 tasks in a week allows some
estimates to be a bit optimistic and some to be a bit
pessimistic. All we want is that, by the end of the
week, people have finished what they promised. As
long as the average estimation is OK, all tasks can be
finished by the end of the week. As soon as people
learn not to overrun their (average) estimates
anymore, there is no need to track or record overrun
metrics. The attitude replaces the need for the metric.
In many cases, the deadline of a project is defined by
genuine external factors like a finite market-window.
Then we have to predict which requirements we can
realize before the deadline or “Fatal-Date”. Therefore,
we still need to estimate the amount of work needed
for the various requirements. We use the TimeLine
technique to regularly predict what we will have
accomplished at the FatalDate, and what not, and to
make sure that we will have a working product well
before that date. Testers use TimeLine to control that
they will complete whatever they have to do in the
project, in sync with the developers.
Several typical testing metrics become irrelevant
when we aim for defect free results, for example:

• Defects-per-kLoC or Defects-per-page
Counting defects condones the existence of
defects, so there is an important psychological
reason to discourage counting them

• Incoming defects per month, found by test, found
by users
Don’t count incoming defects. Do something about
them. Counting conveys a wrong message. We
should better make sure that the user doesn’t
experience any problem

• Defect detection effectiveness or Inspection yield
(found by test / (found by test + customer)
There may be some defects left, because
perfection is an asymptote. It’s the challenge for
testers to find them all. Results in practice are in
the range of 30% to 80%. Testers apparently are not
perfect either. That’s why we must strive towards
zero defects before final test. Whether that is
difficult or not, is beside the point

• Cost to find and fix a defect
The less defects there are, the higher the cost to
find and fix the few defects that slip through from
time to time, because we still have to test to see
that the result is OK. This was a bad metric anyway

• Closed defects per month or Age of open customer
found defects
Whether and how a defect is closed or not,
depends on the prioritizing process. Every week
any problems are handled, appropriate tasks are
defined and put on the Candidate Task List, to be
handled when their time has come. It seems that
many metrics are there because we don’t trust the
developers to take appropriate action. In Evo, we
do take appropriate action, so we don’t need
policing metrics

• When are we done with testing?
Examples from conventional projects: if the
number of bugs found per day has declined to a
certain level, or if the defect backlog has
decreased to zero. In some cases, curve fitting
with early numbers of defects found during the
debugging phase is used to predict the moment
the defect backlog will have decreased to zero.
Another technique is to predict the number of
defects to be expected from historical data. In Evo
projects, the project will be ready at the agreed
date, or earlier. That includes testing being done

Instead of improving non-value adding activities,
including various types of metrics, it is better to
eliminate them. In many cases, the attitude, and the
assistance of the Evo techniques replace the need for
metrics. Other metrics may still be useful, like
Remaining Defects, as this metric provides information
about the effectiveness of the prevention process.
Still, even more than in conventional metrics activities,
we will be on the alert that whatever we do must
contribute value.
If people have trouble deciding what the most
important work for the next week is, I usually suggest
as a metric: “The size of the smile on the face of the
customer”. If one solution does not get a smile on his
face, another solution does cause a smile and a third
solution is expected to put a big smile on his face,
which solution shall we choose? This proves to be an
important Evo metric that helps the team to focus.

18 Finally
Many software organizations in the world are working
the same way, producing defects and then trying to
find and fix them, waiting for the customer to
experience the reminder. In some cases, the service
organization even is the profit-generator of the
company. And isn’t the testing department assuring
the quality of our products?
That’s what the car and electronics manufacturers
thought until the Japanese products proved them
wrong. So, eventually the question will be: can we
afford it?

Niels Malotaux: Optimizing the Contribution of Testing to Project Success 9

Moore’s Law is still valid, implying that the complexity
of our systems is growing exponentially, and the
capacity needed to fill these systems with meaningful
software is growing exponentially even faster with it.
So, why not better become more productive by not
injecting the vast majority of defects. Then we have
more time to spend on more challenging activities
than finding and fixing defects.
I absolutely don’t want to imply that finding and fixing
is not challenging. Prevention is just cheaper. And,
testers, fear not: even if we start aiming at defect free
software, we’ll still have to learn a lot from the
mistakes we’ll still be making.

Dijkstra [8] said:
It is a usual technique to make a program and then
to test it. But: program testing can be a very
effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.

Where we first pursued the very effective way to
show the presence of bugs, testing will now have to
find a solution for the hopeless inadequacy of
showing their absence. That is a challenge as well.
I invite testers from now on to change their focus
from finding defects, to working with the developers
to minimize the generation of defects in order to
satisfy the real goal of software development
projects. Experience in many projects shows that this
is not an utopia, but that it can readily be achieved,
using the techniques described.

References

[1] The Standish Group: Chaos Report, 1994, 1996,
1998, 2000, 2002, 2004.
www.standishgroup.com

[2] N.R. Malotaux: How Quality is Assured by
Evolutionary Methods, 2004.
PNSQC 2004 Proceedings.
Also downloadable as a booklet:
www.malotaux.nl/booklets - booklet#2

[3] N.R. Malotaux: Evolutionary Project
Management Methods, 2001.
www.malotaux.nl/booklets - booklet#1

[4] T. Gilb: Principles of Software Engineering
Management, 1988.
Addison-Wesley Pub Co, ISBN: 0201192462.

[5] See cases:
www.malotaux.nl/nrm/Evo/EvoFCases.htm

[6] P.B. Crosby: Quality Without Tears, 1984.
McGraw-Hill, ISBN 0070145113.

[7] W.E. Deming: Out of the Crisis, 1986. MIT, ISBN
0911379010.
M. Walton: Deming Management At Work, 1990.
The Berkley Publishing Group, ISBN
0399516859.

[8] E. Dijkstra: Lecture: The Humble Programmer,
1972.
Reprint in Classics in Software Engineering.
Yourdon Press, 1979, ISBN 0917072146.

[9] TaskCycle ref [2] chapter 5.1
 ref [3] chapter 3C

[10] DeliveryCycle ref [2] chapter 5.1
 ref [3] chapter 3C

[11] TimeLine ref [2] chapter 5.5 + 6.8
[12] Product ref [2] chapter 4.2
[13] Project ref [2] chapter 4.3
[14] Process ref [2] chapter 4.4
[15] 3-step procedure ref [2] chapter 6.9
[16] Unplannable time ref [2] chapter 6.1
[17] Interrupt procedure ref [2] chapter 6.7
[18] Analysis task ref [2] chapter 6.6

 ref [3] chapter 8
[19] Candidate Task List ref [2] chapter 6.5

 ref [3] chapter 8
[20] TimeBox ref [2] chapter 6.4

 ref [3] chapter 3D

Let’s define the Goal of development projects as: Providing the customer with what he needs, at the time he needs it,
to be more successful than he was without it, constrained by what we can deliver in a reasonable period of time.
Furthermore, let’s define a defect as the cause of a problem experienced by the users of our software. If there are no
defects, we will have achieved our goal. If there are defects, we failed. We know all the stories about failed and partly
failed projects, only about one third of the projects delivering according to the original goal.

Apparently, despite all the efforts for doing a good job, too many defects are generated by developers, and too many
remain undiscovered by testers, causing still too many problems to be experienced by users. It seems that people are
taking this state of affairs for granted, accepting it as a nature of software development. A solution is mostly sought
in technical means, like process descriptions, metrics and tools. If this really would have helped, it should have shown
by now.

Oddly enough, there is a lot of knowledge about how to significantly reduce the generation and proliferation of
defects and deliver the right solution quicker. Still, this knowledge is ignored in the practice of many software
development organizations. In 2004, I published a booklet: How Quality is Assured by Evolutionary Methods, describing
practical implementation details of how to organize projects using this knowledge, making the project a success.
In this booklet we’ll extend these Evolutionary methods to the testing process, in order to optimize the contribution
of testing to project success.
Important ingredients for success are: a change in attitude, taking the Goal seriously, which includes working towards
defect free results, focusing on prevention rather than repair, and constantly learning how to do things better.

Niels Malotaux is an independent Project Coach specializing in optimizing project performance. Since 1974 he
designed electronic hardware and software systems, at Delft University, in the Dutch Army, at Philips Electronics and
20 years leading his own systems design company. Since 1998 he devotes his expertise to helping projects to deliver
Quality On Time: delivering what the customer needs, when he needs it, to enable customer success. To this effect,
Niels developed an approach for effectively teaching Evolutionary Project Management (Evo) Methods,
Requirements Engineering, and Review and Inspection techniques. Since 2001 he taught and coached over 400
projects in 40+ organizations in the Netherlands, Belgium, China, Germany, India, Ireland, Israel, Japan, Romania,
South Africa, Serbia, the UK, and the US, which led to a wealth of experience in which approaches work better and
which work less in the practice of real projects. He is a frequent speaker at conferences, see
www.malotaux.nl/conferences

Find more booklets at: www.malotaux.nl/booklets
1. Evolutionary Project Management Methods
2. How Quality is Assured by Evolutionary Methods (this booklet)
3. Optimizing the Contribution of Testing to Project Success
3a. Optimizing Quality Assurance for Better Results (same as 3, but now for non-software projects)
4. Controlling Project Risk by Design
5. TimeLine: Getting and Keeping Control over your Project
6. Recognizing and Understanding Human Behaviour
7. Evolutionary Planning (similar to booklet#5 TimeLine, but other order and added predictability)
8. Help! We have a QA problem!
9. Predictable Projects - How to deliver the Right Results at the Right Time
ETA: Evo Task Administration tool - www.malotaux.nl/?id=downloads#ETA

Niels Malotaux

Originally prepared for the Annual Pacific Northwest Software Quality Conference, Portland, USA, 2005
Version 1.13 (few edits) – 7 July 2019

N R Malotaux
Consultancy
Niels R. Malotaux
phone +31-655 753 604
mail niels@malotaux.nl
web www.malotaux.nl

	Niels Malotaux
	1 Introduction
	2 The Goal
	3 The knowledge
	4 Something is not right
	5 The problem with bugs
	6 Defects found are symptoms
	7 Defects typically overlooked
	8 Is defect free software possible?
	9 Attitude
	11 How about Project Evaluations
	12 Current Evo Testing
	13 Further improvement
	14 Cycles in Evo
	15 Evo cycles for testing
	16 Database for Change Requests and Problem Reports and Risk Issues
	17 How about metrics?
	18 Finally
	Niels Malotaux

