

IKD training lente 2008
Succesvol Plannen van Softwareprojecten

20 en 27 mei 2008

EEvvoolluuttiioonnaaiirree
PPrroojjeecctt MMaannaaggeemmeenntt

MMeetthhooddeenn

HHooee rreeaalliisseeeerr jjee hheett bbeessttee rreessuullttaaaatt
iinn ddee kkoorrttsstt mmooggeelliijjkkee ttiijjdd

Niels Malotaux

N R Malotaux - Consultancy
Bilthoven

030-2288868
niels@malotaux.nl
www.malotaux.nl

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

20080525 Meer informatie:
 www.malotaux.nl/nrm/Evo

Niels Malotaux

Sinds 1998 treedt Niels Malotaux op als onafhankelijke consultant en project coach. Hij
leert projecten en organisaties hoe ze voortaan Kwaliteit op Tijd kunnen leveren. Dat is het
juiste op de juiste tijd, zonder excuses.

Niels heeft meer dan 30 jaar ervaring in het ontwikkelen van elektronische en software
producten, eerst aan de TUDelft, vervolgens tijdens militaire dienst, toen bij Philips en
tenslotte zo’n 20 jaar in zijn eigen systeemontwikkelings ingenieursbureau. Nu onderzoekt
hij hoe menselijk gedrag het resultaat van projecten beïnvloedt en ontwikkelt hij methoden
hoe we dit efficiënt en effectief kunnen verbeteren. Sinds 2001 onderwees en coachte Niels
meer dan 100 projecten in 20+ verschillende organisaties in Nederland, België, Ierland,
India, Japan, Roemenië en de VS, hetgeen een schat aan ervaring opleverde over wat
beter en wat minder goed werkt. Hij spreekt regelmatig op conferenties en heeft 5 boekjes
gepubliceerd. Kijk op www.malotaux.nl/nrm voor meer informatie.

Ir Niels Malotaux
project coach

Result Management

 Bongerdlaan 53
 3723 VB Bilthoven

Nederland
 tel 030-228 88 68
 fax 030-228 88 69
 mob 06-5575 3604

 niels@malotaux.nl
www.malotaux.nl/nrm

This is shareware. You may copy this document electronically or on paper for any useful purpose except sale for profit.
You must include credit of source (Niels Malotaux, Tom Gilb (TG), Don Mills (DM), Dorothy Graham/Grove Consultants
(DG), Erik Simmons (ES)) and this Permission notice. Please ask for updates if you are distributing to many people.

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

1

1

Niels Malotaux N R Malotaux
Consultancy

+31-30-228 88 68 niels@malotaux.nl www.malotaux.nl

EvolutionaryEvolutionary
Project ManagementProject Management
MethodsMethods
How to get the best results in the shortest timeHow to get the best results in the shortest time

2

Niels Malotaux

Project Coach
• Evolutionary Project Management (Evo)

• Requirements Engineering

• Reviews and Inspections

• Researching problems in projects

• Finding ways to fundamentally overcoming these problems

• Ploughing back into projects

• Tuning of the results (because theory isn’t practice)

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

2

3

IKD training lente 2008

Dag 1:
• Inleiding, menselijke factoren, oefening in o.m. tijdschatten, basiselementen voor

project planning
• Project planning in de praktijk, introductie TimeLine, eerste uitwerking van je

individuele TimeLine
• Plannen van het werk voor de komende week
Huiswerk:
• Uitvoeren van je planning, bepalen wat je de volgende week denkt te moeten gaan

doen, waarom, en hoeveel tijd dat gaat kosten. Verzamelen TimeLine materiaal
Dag 2:
• Analyse van de resultaten van de afgelopen week
• Requirements en Design
• Project risico’s, test en review technieken, inspectie van requirements document
• Discussie over het geleerde van de afgelopen weken
• Aanscherpen van Evo elementen naar aanleiding van de ervaring van de afgelopen

weken
• Plannen van het werk voor de komende week

4

Projects

• Who’s working in projects?

• Do these projects deliver the right results ?

• Do these projects deliver on time ?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

3

5

The problem

• Many projects don’t deliver the right Results
• Many projects deliver late

or, more positively:

• I want my project to be more successful
• In shorter time

6

Quality On Time

• Whatever you do in a project,
at a certain moment there should be a Result

• How do we get the Right Result at the Right Time?

• Or, for short: Quality On Time

• What the Customer needs, when he needs it,
to earn more than we need

Fatal
Datenow

TimeLine

Result

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

4

7

Higher Productivity

• All functionality we produce does already exist

• The real reason for running our projects is
creating better performance

• Improvement of productivity, value, success
for our customers

8

Performance

• Usability.Productivity: V8.5 V9.0
• Time to set up a typical specified report 65 20 min
• Time to generate a survey 120 0.25 min
• Time to grant access to report,

distribute logins to end-users 80 5 min

• Usability.Intuitiveness:
• Time for medium experienced programmer

to find out how to do ... 15 5 min

• Capacity.RuntimeConcurrency
• Max number of concurrent users,

click-rate 20 sec, response time < 0.5 sec 250 6000 users

after FIRM / Gilb 2005

265 25 min

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

5

9

Stakeholders and Requirements

• A Stakeholder is anybody with
a stake in the Results of our project

• Customer, user, up to ourselves
• Every project has about 30 (±20) Stakeholders
• Internal, external, active, passive Stakeholders
• Victims
• The set of Stakeholders doesn’t change much

• Requirements are what the Stakeholders require
but for a project ...
• Requirements are the set of stakeholder needs that a

project is planning to satisfy

10

No Stakeholder?

• No Stakeholder: no requirements

• No requirements: nothing to do

• No requirements: nothing to test

• If you find a requirement without a Stakeholder:
• Either the requirement isn’t a requirement
• Or, you haven’t determined the Stakeholder yet

• If you don’t know the Stakeholder:
• Who’s going to pay you for your work?
• How do you know that you are doing the right thing?
• When are you ready?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

6

11

Absolutes of Quality

• Conformance to requirements
• Obtained through prevention
• Performance standard is zero defects
• Measured by the price of non-conformance (PONC)

Philip Crosby, 1970

• The purpose is customer success
(not customer satisfaction)

Added by Philip Crosby Associates, 2004

12

Is defect free software possible?

•

• When Philip Crosby started with Zero Defects in 1961,
errors dropped by 40% almost immediately

• Zero Defects is an asymptote

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

7

13

Attitude

• As long as we think defect free software is impossible, we
will keep producing defects

• From now on, we don’t want to make mistakes any more

• We feel the failure (if we don’t feel the failure, we don’t learn)

• If we deliver a result, we are sure it is OK and we are
surprised when there proves to be a defect after all

• We constantly, actively improve
what we do and how we do it

14

No cure - no pay

• If what you do doesn’t deliver a positive ROI,
there is no money to pay your salary

• So, better do not do things that do not deliver ROI

• Do you dare to work on a no-cure-no-pay basis?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

8

15

time

pr
ob

ab
ili

ty

av
er

ag
e

pro
je

ct
 es

tim
at

io
n

boss
 o

r c
ust

om
er

re
su

lt

Motivation drives productivity
Motivation drives productivity

Able estimation is vital
Able estimation is vital

Lead time

16

Estimation Exercise

Are you an optimistic or a realistic estimator?

Let’s find out !

Project:
Multiplying two numbers of 4 figures

How many seconds would you need to
complete this Project?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

9

17

Is this what you did?

18

Defect rate

• Before test ?

• After test ?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

10

19

Alternative Design (how to solve the requirement)

20

Another alternative design

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

11

21

22

Elements in the exercise

• Estimation, optimistic / realistic
• Interrupts
• Test, test strategy
• Defect-rate
• Design
• Requirements
• Assumptions

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

12

23

Project Goal

• Providing the customer with
• what he needs
• at the time he needs it
• to be satisfied
• to be more successful than he was without it

• Constrained by
• what the customer can afford
• what we mutually beneficially and satisfactorily can deliver
• in a reasonable period of time

24

Murphy’s Law

• Whatever can go wrong, will go wrong

• Should we accept fate?

Murphy’s Law for Engineers:

• Whatever can go wrong, will go wrong …

Therefore:

• We should actively check all possibilities that can go wrong and
make sure that they cannot happen

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

13

25

Human Behavior

• Systems are conceived, designed, implemented, maintained, used,
and tolerated (or not) by people

• People react quite predictably

• However, often differently from what we intuitively think

• Most project process approaches (as well as developers) ignore
human behavior, incorrectly assume behavior, or decide how
people should behave (ha ha)

• To succeed in projects, we must study and adapt to real behavior
rather than assumed behavior

• Going against our genes is a lost battle

26

Discipline

• Control of wrong inclinations
• Even if we know how it should be done …

(if nobody is watching …)

• Discipline is very difficult
• Romans 7:19

• For the good that I would I do not …

→ We must help each other (watching over the shoulder)

→ Rapid success helps (within two weeks)

→ Making mistakes helps (if we immediately learn from them)

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

14

27

Intuition

• Makes you react on every situation

• Intuition is fed by experience

• It is free, we always carry it with us

• We cannot even turn it off

• Sometimes intuition shows us the wrong direction

• In many cases the head knows, the heart not

• Coaching is about redirecting intuition

28

Is intuition wrong, or is the design wrong?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

15

29

Communication

• Talking as near as possible along each other

• Don’t assume we understand: check !

To each other Along each other

30

Communication

• Traffic accident: witnesses tell their truth

• Same words, different concepts

• Human brains contain rather fuzzy concepts

• Try to explain to a colleague

• Writing it down is explaining it to paper

• If it’s written it can be discussed and changed

• Vocal communication evaporates immediately

• E-mail communication evaporates in a few days

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

16

31

Perception

• Quick, acute, and intuitive cognition (M-W)

• What people say and what they do is not always equal
• The head knows, but the heart decides
• Hidden emotions are often the drivers of behavior
• Customers who said they wanted lots of different ice cream flavors

from which to choose,
still tended to buy those that were fundamentally vanilla

• So, trying to find out what the real value to the customer is, can
show many paradoxes

• Better not simply believe what they say: check!

32

Preflection, foresight, prevention

• If we don’t change our way of working,
the result won’t be different

• Hindsight is easy, but reactive

• Foresight is less easy, but proactive

• Reflection is for hindsight and learning

• Preflection is for foresight and prevention

• Only with prevention we can save precious time

• This is used in the Deming or Plan-Do-Check-Act cycle

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

17

33

The essential ingredient: the PDCA cycle
(Deming cycle)

34

Project evaluations

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

18

35

Waterfall or Big Bang model
= production
= fixed contract model (signed with blood)

36

Using many waterfalls
of growing functionality

w
aterfall

prepare

w
aterfall

w
aterfall

w
aterfall

w
aterfall

w
aterfall

w
aterfall

w
aterfall

finalize

finalize

cycle 1 n5 n-12 43 - - - - - - - -

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

19

37

Knowledge
how to achieve the goal

If we
• Use very short Plan-Do-Check-Act cycles
• Constantly selecting the

most important things to do
then we can
• Most quickly learn what the real requirements are
• Learn how to most effectively and efficiently realize these

requirements
and we can
• Spot problems quicker, allowing

more time to do something about them

doing the
right things

doing the
right things

right

38

Evo

• Evo (short for Evolutionary...) uses PDCA consistently
• Applying the PDCA-cycle

actively, deliberately, rapidly and frequently,
for Product, Project and Process, based on ROI and highest
value

• Combining Planning, Requirements- and Risk-Management
into Result Management

• We know we are not perfect,
but the customer should never find out

• Evo is about delivering Real Stuff to Real Stakeholders doing
Real Things “Nothing beats the Real Thing”

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

20

39

Evo planning

Evo elements• Plan-Do-Check-Act
• The powerful ingredient for success

• Business Case
• Why we are going to improve what

• Requirements Engineering
• What we are going to improve and what not
• How much we will improve: quantification

• Architecture and Design
• Selecting the optimum compromise for the conflicting requirements

• Agile Review & Inspection
• Measuring the quality while we are doing, to prevent doing the wrong things

• Weekly TaskCycle
• Short term planning
• Optimizing estimation
• Promising what you can achieve
• Living up to your promises

• Bi-weekly DeliveryCycle
• Optimizing the requirements and checking the assumptions
• Soliciting feedback by delivering Real Results to appropriate and eagerly waiting

Stakeholders

• TimeLine
• Getting and keeping control of Time

Zero
Defects
Attitude

40

Cycles in Evo: Weekly TaskCycle

• Are we doing
the right things,
in the right order,
to the right level of detail for now

• Optimizing estimation, planning and tracking
abilities to better predict the future

• Select highest priority tasks, never do any lower
priority tasks, never do undefined tasks

• There are only about 26 plannable hours in a week (2/3)

• In the remaining time: do whatever else you have to do

• Tasks are always done, 100% done

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

21

41

Every week we plan

• How much time do we have available
• 2/3 of available time is net plannable time
• What is most important to do
• Estimate effort needed to do these things
• Which most important things fit in the net available time

(default 26 hr)
• What can, and are we going to do
• What are we not going to do

2/3 is default start value
This value works well in development projects

Task a 2
Task b 5
Task c 3
Task d 6
Task e 1
Task f 4
Task g 5
Task h 4
Task j 3
Task k 1

26

do

not
do

42

Weekly 3-Step Procedure

1. Individual preparation
• Conclude current tasks
• What to do next
• Estimations
• How much time available

2. Modulation with / coaching by Project Management
• Status
• Priority check
• Feasibility
• Commitment and decision

3. Synchronization with group (team meeting)
• Formal confirmation
• Concurrency
• Learning
• Helping
• Socializing

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

22

43

Cycles in Evo: DeliveryCycle

• Are we delivering
the right things,
in the right order
to the right level of detail for now

• Optimizing requirements
and checking assumptions

a. What will generate the optimum feedback

b. We deliver only to eagerly waiting stakeholders

c. Delivering the juiciest, most important
stakeholder values that can be made in the least time

• What will make Stakeholders more productive now

• Not more than 2 weeks

44

Tasks feed Deliveries

TimeLine

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

23

45

Task Cycle ↔ Delivery Cycle

Doing Delivering
the right things, in the right order to the right level of detail

Optimizing
Estimation, Requirements,

planning, tracking assumptions

Selecting
Highest priority tasks Most important values

≤ 1 week ≤ 2 weeks

Always done, 100% done

46

Agile, but Still On Time

• Organizing the work in very short cycles
• To make sure we are doing the right things
• And that we are doing it the right way
• So, we already work more efficiently

but ...

• How do we make sure the whole project is done on time?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

24

47

TimeLine

• Whatever you do from now,
at a certain date there should be a Result

• We use TimeLine to control of longer periods of time
• Earned Value (hindsight) and Value Still to Earn (foresight)

Fatal
Datenow

TimeLine

Result

Fatal
Datestart now

Earned Value → Burnt Money Value Still to Earn

history future

reflection preflection

48

TimeLine What the customer wants, he cannot afford

Standard Projects

Evo

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

25

49

If it easily fits ...

50

Result to Tasks and back

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

26

51

Setting a Horizon

52

Result to Tasks and back

Task a 2
Task b 5
Task c 3
Task d 6
Task e 1
Task f 4
Task g 5
Task h 4
Task j 3
Task k 1

26

do

do
not

Task a 2
Task b 5
Task c 3
Task d 6
Task e 1
Task f 4
Task g 5
Task h 4
Task j 3
Task k 1

2626

do

do
not

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

27

53

If it doesn’t fit ...

54

Options in case things don’t fit in time

• If we ostrich till the end,
things will be left undone randomly

• We use the early warning to do something
about it:

• Adding people
• Hoping for the best
• Going for it
• Working Overtime
• Adding time: Moving the deadline

• Saving time !

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

28

55

Deceptive options

• Hoping for the best (fatalistic)

• Going for it (macho)

• Overtime (fooling ourself)

• Moving the deadline
• Parkinson’s Law

Work expands to fill the time for its completion
• Student Syndrome

Starting as late as possible, only when the pressure of the
FatalDate is really felt

56

Adding people

makes it later

(Brooks’ Law, 1975)

to a late project ...

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

29

57

Project-duration

1 2 3 4 5 6 87 9 10 11 12 13 14 15 16

1

2

3

4

5

6

8

7

9

10

11

12

13

14

intuition
people x time = constant
Man-Month Myth

reality
(Putnam)

project
duration

number of people

lower cost

shorter time

nine
mothers
area

Economic
optimum?

58

Solution ?

• Small parallel projects
• Regularly synchronizing

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

30

59

Saving time

• We don’t have enough time
• We can save time, without negatively affecting the Result
• Efficiency improvement in:

• What (why, for whom): doing only what is needed,
not doing things that later prove to be superfluous

• Because people tend to do more than necessary
especially if they don’t exactly know what to do

• Magic question: “Who is waiting for this?”

• How: doing things differently
• First think, then do: Plan before Do, Design before Implement
• Using Check and Act to improve

• When: doing things at the right time, in the right order

• Using TimeBoxing
• Much more efficient than FeatureBoxing

First develop the problem,

only then the solution, and

only then the implementation

60

Accepting Fate? Calibrating estimations and
options and consequences

-a- originally estimated
-b- actually done after 4 wk

after 4 wk:

-c- extrapolated consequence
-d- taking longer
-e- going faster
-f- more time needed
-g- doing only what is needed
-h- working more cleverly

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

31

61

5 day project model

dayplan daycheckwork according to plan

mon tue wed thu fri

pl
an

ni
ng

re
qu

ire
m

en
ts

gl
ob

al
 d

es
ig

n

de
ta

il
ex

ec
ut

io
n

re
vi

ew
 a

nd
 e

di
t

pr
es

en
ta

tio
n

de
liv

er
y

do
cu

m
en

ta
tio

n
ar

ch
iv

in
g

co
nt

in
ui

ty

62

Available TimeBoxes

total
Continuity
Archiving
Documentation
Delivery
Presentation
Review and edit
Detail execution
Global design
Requirements
Planning

~%activity

100
5
5
5
10
5

20
20
20
5
5

40
2
2
2
4
2
8
8
8
2
2

hrs

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

32

63

TimeLine example

1-Jan-07 31-Dec-08

1-Apr-07 1-Jul-07 1-Oct-07 1-Jan-08 1-Apr-08 1-Jul-08 1-Oct-08

14-May-07 1-Feb-08

1-Aug-07 - 1-Nov-07
SW3

5-Mar-07 1-Aug-07 1-Nov-07 1-Apr-08

1-Jan-07 - 5-Mar-07

Phase 1
Definition

5-Mar-07 - 1-Aug-07

Phase 2
Validating Architecture

1-Aug-07 - 1-Apr-08

Phase 3
Realization Initial System

5-Mar-07 - 17-Mar-07

SW1.1

17-Mar-07
Very simplest

system

14-May-07 - 1-Aug-07
SW2

5-Mar-07 - 14-May-07
SW1

1-Nov-07 - 1-Feb-08
SW4

1-Feb-08 - 31-Dec-08
SW5

1-Apr-08 - 31-Dec-08

Phase 4
Realization Final System

1-Aug-07
Basic overall

system

1-Nov-07
Rich

overall system

1-Apr-08
Exhibition

ready

10wk 11wk 13wk 11wk 8wk

1-Feb-08
Exhibition feature

cut-off

Full overall
system

14-May-07
Basic

system

31-Dec-08
Complete

64

Designing
a Delivery

Serge (ProjLead)
MbWA 3
Planning nxt wk 3
Work for deliv 4
- 6
- 2
- 1
- 5
Total 24

Gregory
Draft design 6
Finish design 6
Work for deliv 3
- 1
- 2
- 2
- 3
- 5
- 6
XMLa 4
XMLb 4
Total 42

Jerome
XMLa 3
XMLb 3
...

available time:
36 hr gross

24 hr plannable deliv to
main
team

Delivery to
Stakeholders

TaskCycle

Gregory (later)
Draft design 0
Finish design 0
...

Repair deliv 0
...

Gregory
Draft design 0
Finish design 0
Work for deliv 3
- 1
- 2
- 2
- 3
- 5
- 6
XMLa 4
XMLb 4
Total 30

Gregory
Draft design 0
Finish design 0
Work for deliv 3
- 1
- 2
- 2
- 3
- 5
- 6
XMLa 1
XMLb 1
Total 24

FriThuWedMon TueFri ThuWed Mon TueFri

Delivery to
Stakeholders

Zero
Defects
Attitude

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

33

65

Making individual TimeLines

66

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

34

67

PERT (Project Evaluation Review Technique)
used for Designing a Delivery

9 + 11 + 9 + 6 = 35

68

We have a QA problem !

• Large stockpile of modules
to be tested

• Estimate:
will cost half year of testing

• You shall do Full Regression Tests

• Full Regression Tests take about 15 days each

• QA is bottleneck

• Can we do something about this?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

35

69

TimeLine

wk
9 10 11 12 13 14 15 16 17 13

delivery
cust a

delivery
cust b,c

delivery
cust a,d

start (all done)

70

TimeLine exercise for your Project, step 1

• What is the FatalDate, how many weeks left (= m)
• What is the expected result (←Business Case / Reqs)
• What do you have to do to achieve that result
• Cut this into chunks and make a list of chunks of work
• Estimate the chunks (in weeks)
• Calculate number of weeks (= n)
• Compensate for estimated incompleteness of the list (new n)
• How many people are available for the work (= R)

1. n / R > m: more time needed than available
2. n / R = m: still probably not enough time
3. n / R << m: probably possible to succeed on time

• Case 1 and 2: work out the consequence at this level
• Case 3: continue to the next level

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

36

71

TimeLine exercise for your Project, step 2

• Choose Horizon, with clear intermediate Result
• Repeat steps from step 1, with:

• FatalDate = Horizon
• Amount of work proportionally to total work
• Work may be estimated in some more detail now

• Now we have a pile of work to be done in these 10 weeks

72

TimeLine exercise
for your Project, step 3

• Divide the work for 10 weeks in optimum
order, defining Deliveries of 2 weeks

• Deliveries:
• For feedback, checking requirements and assumptions
• Therefore, must be delivered to eagerly waiting Stakeholders
• If needed to make them eagerly waiting, give them juicy bits

• Make a rather detailed description of the first one or two Deliveries
• Check the feasibility of completing deliveries in two weeks each
• Determine Tasks for the first week
• Estimate the Tasks
• Calibrate the feasibility of the TimeLine with your first weeks

estimations
• Now you have the Tasks for the first week defined

Task a 2
Task b 5
Task c 3
Task d 6
Task e 1
Task f 4
Task g 5
Task h 4
Task j 3
Task k 1

26

do

do
not

Task a 2
Task b 5
Task c 3
Task d 6
Task e 1
Task f 4
Task g 5
Task h 4
Task j 3
Task k 1

2626

do

do
not

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

37

73

Can you make your own Timeline ?

• If yes, do so
• If no, why not?

Homework:
• Can you make a better TimeLine?

74

Cycles in Evo: Weekly TaskCycle

• Are we doing
the right things,
in the right order,
to the right level of detail for now

• Optimizing estimation, planning and tracking
abilities to better predict the future

• Select highest priority tasks, never do any lower
priority tasks, never do undefined tasks

• There are only about 26 plannable hours in a week (2/3)

• In the remaining time: do whatever else you have to do

• Tasks are always done, 100% done

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

38

75

Effort and Lead Time

• Days estimation → lead time (calendar time)

• Hours estimation → effort

• Effort variations and lead time variations have
different causes

• So, treat them differently and keep them separate
• Effort: complexity

• Lead Time: time-management
• (effort / lead-time ratio)

76

Parkinson's Law

“Work expands to fill the time available”

6 days

3 days

5 days Standard Management
• Do 6 days in 5 days!

• Never succeed
• Frustration
• De-motivation
• Stress
• Higher productivity??

Evo
• Do 3 days in 5 days!

• Success
• Unstress
• Energy
• Motivation = Motor of

productivity
• Higher productivity!!

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

39

77

What to plan and what not to plan

• We plan tasks that don’t get done unless planned

• We do not plan tasks that don’t have to be planned to
get done. Such planning costs more than it saves

• Account for these tasks as “unplannable tasks”

• Default we allocate 2/3 for plannable tasks and 1/3 for
unplannable tasks

• We may include tasks in the planning to show that the
hours for these tasks are not available for other work

• Plan all plannable hours

78

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

40

79

Task selection criteria

• Most important requirements first

• Highest risks first

• Most educational or supporting for development first

• Actively Synchronize with other developments

• Every cycle delivers a useful, completed, result

80

Types of Tasks

1. Tasks done within estimated time (= timebox)
2. Analysis Tasks (too short timebox)

• What do you know now
• What do you still not know
• What do you still have to know
• Which tasks can you define

3. Mis-estimated tasks (we’re only human)

• Feed the disappointment about the failure to your
experience/intuition mechanism

• What did you do
• What did you not do
• What do you still have to do
• Which tasks can you define

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

41

81

TimeBox - taking Time seriously

• A TimeBox is the maximum time available for a Task

• When the time is up, the Task should be completely done:
there is no more time !

• Because people tend to do more than necessary
(especially if the requirements of the Task are unclear)

• Check halfway whether you’re going to succeed on time
• If not: what can you do less, without doing too little
• Define the requirements of the Task well
• If the TimeBox is unrealistic: take the consequences (pdcAct) immediately

(if a Task suddenly proves to need much more time, is it still worth the investment?)

• If you really cannot succeed within the TimeBox:
• Check what you did
• Check what you didn’t do
• Check what still has to be done
• Define new Tasks with estimations (TimeBoxes !)
• Stop this Task to allow for finishing the other committed Tasks

(don’t let other Tasks randomly be left undone)

82

Beware of longer Tasks

• Beware of Tasks longer than about 6 hrs
• Estimation is never exact
• If you have 4 or more Tasks in a week, the variation in

the Tasks estimations should average

• You have only 2/3 plannable time, so you can cheat a bit
to get all the committed tasks done

• May seem contradictory to the TimeBox principle...

.
. . . Only the average should be OK:

Result is all that counts

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

42

83

We work on more projects

• Define how many hours available for this project
• Deliver these hours

• Vision:

84

Interrupts

• Boss comes in: “Can you paint my fence?”
• What do you do?

• In case of interrupt, use interrupt procedure

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

43

85

Interrupt Procedure ”We shall work only on planned Tasks”

In case a new task suddenly appears in the middle of a Task Cycle
(we call this an Interrupt) we follow this procedure:
1. Define the expected Results of the new Task properly
2. Estimate the time needed to perform the new Task, to the level of

detail really needed
3. Go to your task planning tool (many projects use the ETA tool)
4. Decide which of the planned Tasks is/are going to be sacrificed

(up to the number of hours needed for the new Task)
5. Weigh the priorities of the new Task against the Task(s) to be

sacrificed
6. Decide which is more important
7. If the new Task is more important: replan accordingly
8. I the new Task is not more important, then do not replan and

do not work on the new Task. Of course the new Task may be added
to the Candidate Task List

9. Now we are still working on planned Tasks.

86

Active Synchronization

Somewhere around you, there is the bad world.
If you are waiting for a result outside your control,
there are three possible cases:

1. You are sure they’ll deliver Quality On Time
2. You are not sure
3. You are sure they’ll not deliver Quality On Time
• If you are not sure (case 2), better assume case 3
• From other Evo projects you should expect case 1
• Evo suppliers behave like case 1

In cases 2 and 3: Actively Synchronize: Go there !
1. Showing up increases your priority
2. You can resolve issues which otherwise would delay delivery
3. If they are really late, you’ll know much earlier

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

44

87

Extending the project horizon to success

• Many projects end at: Hurray, it works!
• If customer success is paying our salaries, shouldn’t

we make sure the success is going to happen
• Now a lot of quality requirements suddenly make

sense:
• User friendliness - Usability
• Intuitiveness - Learnability
• Installability
• Serviceability - Maintainability

88

Why TaskCycle?

• Reflection and Preflection (PDCA)
• Not working on anything less important
• Learning to know what to promise
• And then living up to our promises
• Taking responsibility
• Getting the info to be able to carry the responsibility
• Coping with interrupts
• Active Synchronization
• Calibration of estimations at the TimeLine
• Taming Parkinson’s Law and Students Syndrome

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

45

89

Why would the product need Evo ?

• We don’t know the real requirements
• They don’t know the real requirements

• Together we have to find out (stop playing macho!)

• What the customer wants he cannot afford
• Is what the customer wants what he needs?
• People tend to do more than necessary

especially if they don’t know exactly what to do

If time, money, resources are limited,
we should not overrun the budgets

90

Why would the project need Evo ?

• Are we effective? (producing Results)

• Are we efficient? (optimally using the available time)

• Are we actively learning from our mistakes? (PDCA)

• How do we estimate, plan and track progress?

• How do we handle interruptions?

• Did we learn from feedback per project (project evaluation)?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

46

91

When would we not need Evo

• Requirements are completely clear, nothing will change:
use waterfall (= production)

• Requirements can be easily met with the available
resources, within the available time (Still, Evo can make it faster)

• Everybody knows exactly what to do
• Customer can wait until you are ready
• Management doesn’t know what to do with the time

saved
• No Sense of Urgency

Use Evo only on projects you want to succeed

92

We are constantly optimizing

• The product
how to arrive at the most effective product (goal !)

• The project
how to arrive at the most effective product
effectively and efficiently

• The process
• Finding ways to do better
• Learning from other methods
• Absorbing those methods that work better
• Shelving those methods that currently work less

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

47

93

The problems in projects are not the real problem
The real problem is that we don’t do something about it

94

Vragen?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

48

95

My project is different

• On every project somebody will claim:
“Nice story, but my project is different.
It cannot be cut into two week deliveries.”

• On every project, it takes less than an hour
to define the first short deliveries

• This is one of the less easy issues of Evo.
We must learn to turn a switch

96

Weekly 3-Step Procedure

1. Individual preparation
• Conclude current tasks
• What to do next
• Estimations
• How much time available

2. Modulation with / coaching by Project Management
• Status
• Priority check
• Feasibility
• Commitment and decision

3. Synchronization with group (team meeting)
• Formal confirmation
• Concurrency
• Learning
• Helping
• Socializing

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

49

97

Huiswerk

• Bepaal de Business Case van je eigen project

• Bepaal de top-3 Requirements (met Stakeholders)
• Beschrijf een van die Requirements met Planguage

• Analyseer de resultaten van je weekplanning (Check)
• Bedenk hoe je nog beter kan werken (Act)
• Bepaal je nieuwe weekplanning op basis van

• Je TimeLine
• Wat je geleerd hebt van je vorige weekcyclus resultaten

• Kun je je TimeLine al calibreren met wat er in de week gebeurt?
• Neem een (niet-confidentiëel) document mee voor review

(volgende keer: o.m. testen, reviews, inspections)

• Iets gemist? → stuur een email (niels@malotaux.nl)

98

Links
• www.gilb.com

Tom Gilb’s website: Evo guru

• www.malotaux.nl
Niels’ activities: Evo evangelist

• www.malotaux.nl/nrm/Evo
Evo pages

• www.malotaux.nl/nrm/Insp
Inspection pages

• www.malotaux.nl/nrm/pdf/MxEvo.pdf
Evolutionary Project Management Methods
(issues and first - 2001 - experience)

• www.malotaux.nl/nrm/pdf/Booklet2.pdf
How Quality is Assured by Evolutionary Methods
(more recent - 2004 - practical implementation experience)

• www.malotaux.nl/nrm/pdf/EvoTesting.pdf
Optimizing the Contribution of Testing to Project Success (2005)

• www.malotaux.nl/nrm/pdf/EvoRisk.pdf
Controlling Project Risk by Design (2006)

• www.malotaux.nl/nrm/pdf/TimeLine.pdf
TimeLine: How to get and keep control over longer periods of time (2007)

• www.malotaux.nl/nrm/Evo/ETAF.htm
Download the Evo Task Administrator (ETA) tool
(expects MSAccess 2000~2003)

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

50

99

Niels Malotaux N R Malotaux
Consultancy

030-228 88 68 niels@malotaux.nl www.malotaux.nl/nrm

Can you affordCan you afford
not to use Evo?not to use Evo?

Dag1

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

51

100

Niels Malotaux N R Malotaux
Consultancy

+31-30-228 88 68 niels@malotaux.nl www.malotaux.nl

EvolutionaryEvolutionary
Project ManagementProject Management
MethodsMethods
How to get the best results in the shortest timeHow to get the best results in the shortest time

Dag 2

101

Evo planning

Evo elements• Plan-Do-Check-Act
• The powerful ingredient for success

• Business Case
• Why we are going to improve what

• Requirements Engineering
• What we are going to improve and what not
• How much we will improve: quantification

• Architecture and Design
• Selecting the optimum compromise for the conflicting requirements

• Agile Review & Inspection
• Measuring the quality while we are doing, to prevent doing the wrong things

• Weekly TaskCycle
• Short term planning
• Optimizing estimation
• Promising what you can achieve
• Living up to your promises

• Bi-weekly DeliveryCycle
• Optimizing the requirements and checking the assumptions
• Soliciting feedback by delivering Real Results to appropriate and eagerly waiting

Stakeholders

• TimeLine
• Getting and keeping control of Time

Zero
Defects
Attitude

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

52

102

More cycles

• Horizon
• Intermediate Delivery
• Release
• Project
• Program
• Strategy
• Roadmap

103

Huiswerk

• Bepaal de Business Case van je eigen project

• Bepaal de top-3 Requirements (met Stakeholders)
• Beschrijf een van die Requirements met Planguage

• Analyseer de resultaten van je weekplanning (Check)
• Bedenk hoe je nog beter kan werken (Act)
• Bepaal je nieuwe weekplanning op basis van

• Je TimeLine
• Wat je geleerd hebt van je vorige weekcyclus resultaten

• Kun je je TimeLine al calibreren met wat er in de week gebeurt?
• Neem een (niet-confidentiëel) document mee voor review

(volgende keer: o.m. testen, reviews, inspections)

• Iets gemist? → stuur een email (niels@malotaux.nl)

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

53

104

Week Planning

• Could you plan?
• Why not? (for some)

• Could you follow the plan?
• Why not? (for some)

• What can we learn → Check

• What are you going to do differently next time → Act

• What should you do next week ← Requirements

• Planning of next week ← Plan

105

Evolutionary start pattern

• Evo day
• Explanation of the Evo approach

• Organizing the work of the coming week

• Goal: at the end of the day, people of the team know
what they are going to work on and why

• Weekly Evo day
• Execution of the 3-step procedure (slide 42)

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

54

106

Evolutionary introduction pattern

1. Introducing Tasks → Short term view
How to organize the work

2. Introducing TimeLine → Longer term view
The design of the project

3. Introducing Deliveries → Connecting long and short
Focusing on Results

delivery

task

strategy

roadmap

project

organization

fatal date / budgetnow

will be done may be done will not be done

time / money

most important things bells and whistles

107

Evo workflow
goals

stakehldrs
requiremts
architec-

tures

Evo why
and how

define and
prioritize
deliveries

define and
prioritize

tasks

estimate
tasks

commit
to

tasks

select
highest
priority
tasks

accept
tasks,

discuss,
learn

do tasks

evaluate
both

result and
execution

cycle
as needed

consult
stake-

holders

start Evo way of working

results

max
one

week

use
timeline,
horizon

till ~10wk
timeline

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

55

108

Anything we think must be done goes through the
Candidate Task Mechanism

109

Estimation

• Changing from Optimistic to Realistic

• Only works if we are Serious about Time

Sense of Urgency

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

56

110

0th- order approximations

• Order of magnitude

• Better than 0 < guess < ∞ (Any number is better than no number)

• 0th order is better than no clue
• 1st order is often less accurate than 0th order
• Using two different ways of estimation for crosscheck
• Errors may average if we estimate several pieces

111

Simple Delphi estimation

1. Make a list of things we think we have to do in just enough detail
2. Distribute the list among people who will do the work, or who should

be knowledgeable about the work
3. Ask them to add what we apparently forgot, and to estimate how

much time the elements of work would cost, “as far as you can judge”
4. In a meeting the estimates are compared
5. If estimates differ significantly between estimators, do not take the

average, but discuss about the contents of the work, not about the
estimate (some may forget to include things that have to be done, some others may think
that more has to be done than necessary)

6. After discussion, people estimate individually again and the estimates
are compared again

7. Repeat until sufficient consensus (usually not more than once or twice)
8. Add up all the estimates to end up with an estimate for the whole

project

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

57

112

Estimation is non-symmetric

time

pr
ob

ab
ili

ty

113

Cone of Uncertainty

25%

50%

75%

100%

-100%

-75%

-50%

-25%

0%

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

58

114

Delphi Exercise

- What’s the average number of coins in our pockets?

- Write down your estimates

1. Individually (no discussion) estimate the number

2. Compare and discuss with your neighbour
and estimate again

3. Count the actual number of coins in your pockets

115

Project Management

• How many people are there in your projects?
• 1
• 2
• 5
• 10
• >10

• Do you need a Project Manager?

• First talking about functions
PM, architect, developer, tester, QA, user, reviewer, ...

• Then about who’s going to do it
• Every function means another attitude (andere pet)

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

59

116

Types of Project Management

1. There is no project leader

2. He does not know, others don’t know or nobody
knows what it means

3. Project follower:
Hopes that it will get on track eventually

4. Project leader: vision, strategy, scenario’s, first time
right, zero defects, time to market: makes it happen

Projects without project leader fail

117

Architect ↔ Project Manager

• Architect: Master Builder
• Architect is the conductor of the Product
• Project Manager is the conductor of the Project
• There is only one captain on the ship:

the Project Manager
• QA Manager is the conductor of the QA Process
• Test lead is the conductor or the Test Process

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

60

118

Extending the project horizon to success

• Many projects end at: Hurray, it works!
• If customer success is paying our salaries,

shouldn’t we make sure the success is going to
happen

• Now a lot of quality requirements suddenly make
sense:
• User friendliness - Usability
• Intuitiveness - Learnability
• Installability
• Serviceability - Maintainability

119

Business Case

• What could be the reason for having a Business
case for your project?

• Do you have a (documented) Business Case for your
project?

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

61

120

Business Case

• What to improve and WhyWhy
• Used to continually align the Projects progress to the

business objectives
• Drives the decision making processes
• May change during the project

• Stakeholders
• Expected Return on Investment (ROI)

• Cost of doing nothing + Benefit of doing - Cost of doing

• Total LifeCycle

First develop the problem,

First develop the problem,
only then the solution and

only then the solution and
only then the implementation

only then the implementation

121

Stakeholders and Requirements

• A Stakeholder is anybody with
a stake in what we are working on

• Customer, user, up to ourselves

• Every project has about 30 (± 20) Stakeholders

• The set of Stakeholders doesn’t change much

• Requirements are what the Stakeholders require
but for a project ...
• Requirements are the set of stakeholder needs that a

project is planning to satisfy

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

62

122

Five times “Why?”

• Customer explains what he wants you to do
• You ask: “What’s your problem?”
• He says: “I have no problem, just do what I said !”
• You say: “If you have no problem, there is nothing to do” and:

“Why do you want me to do what you said; for what purpose?”
• “Well, because”
• “And why is that?”
• “Well, because”
• etc.

• Go to the bottom and then look for the best solution for the real problem
• Within three to five times “Why?” you usually find the real problem

First develop the problem,

First develop the problem,
only then the solution and

only then the solution and
only then the implementation

only then the implementation

123

ROI - Return On Investment

start
use

in
ve

st
m

en
t

re
tu

rn

doing less
and more
efficiently

more people?

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

63

124

Business Case exercise (groups of 2 or 3 people)

Write down a (simplified) Business Case for your current
project

• What is going to be improved - and what not
•• Why are we doing thisWhy are we doing this
• Who’s waiting for it
• When do they need it
• Expected Return on Investment (ROI)

• Cost of doing nothing + Benefit of doing - Cost of doing

125

The Requirements Paradox

• Requirements must be stable
• Requirements always change

→ Use a process that can cope with
the requirements paradox

You cannot foresee every change,
but you can foresee change itself

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

64

126

The 2nd requirements paradox

• We don’t want requirements to change, however,

• Because requirements change now is a known risk:
We must provoke requirements change
as early as possible

Perfect
Requirements

finish

127

Requirements

• What Stakeholders need
• What the project is planning to satisfy

• You better spend 10 ~ 15% of the project time on
Requirements in order to save time

• No design (how it is to be done)

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

65

128

No Design in the requirements, but ...

Needs:
what do we need

Options:
how can we do it Selected solution:

this is how we are going to do it

Design provides the
Requirements for the next level

Requirements

Design
Requirements

Design

Requirements

Design

Requirements

Design

129

Requirements should be at one place only

Company
Standards

ProductRange
Requirements

Product
Specific

Requirements

Requirements

+

+

Data should be at one place only
Code should be at one place only

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

66

130

Use Cases / Scenarios

• Used to capture product usage and high level
features

• Usage data is essential to requirements
generation and validation activities

• Use cases require very little sophistication on the
part of the reader

• Use cases are not the same as product
requirements, and are not enough by themselves

• Mis-Use Cases are as important

131

Top-level Requirement for any Project

• Providing the customer with
• what he needs
• at the time he needs it
• to be satisfied
• to be more successful than he was without it

• Constrained by
• what the customer can afford
• what we mutually beneficially and satisfactorily can deliver
• in a reasonable period of time

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

67

132

Basic Types of Requirements

• Functional binary
• Functional Requirements Scope the Project
• Things the system must do
• Functional requirements are binary (they’re there or not)

• Quality / Performance* scalar
• How much to enhance the performance of the selected

functions

• Constraints binary / scalar
• What should we not do, be aware of, be limited by

* Better not use non-functional requirements !

133

Performance Requirements

• How fast
• How big
• How nice to see
• How nice to use
• How accurate
• How reliable
• How secure
• How dependable
• How well usable
• How well maintainable
• How well portable
• How well ….

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

68

134

Extended ISO Model

Functionality
suitability
accuracy
interoperability
compliance
security
traceability

Reliability
maturity
fault tolerance
recoverability
availability
degradability

Usability
understandability
learnability
operability
explicitness
customisability
attractivity
clarity
helpfulness
user-friendlyness

Efficiency
time behavior
resource behavior

Portability
adaptability
installability
conformance
replaceability

Maintainability
analyzability
changeability
stability
testability
manageability
reuseability

ISO9126 - QUINT

safety?

that-ability?

real time behavior?

de
pe

nd
ab

ilit
y

this-ability?

135

Constraints

• What it should not do
• Budget

• Money
• Time

• People
• You’d want to have the best in your team
• You’ll have to do with what you have. That’s the challenge !

• Standards
• Legal
• Political
• Ethical

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

69

136

Attributes of a Good Requirement

A Good Requirement is:

Relevant Clear Unique
Complete Elementary Verifiable
Consistent Concise Traceable
Unambiguous Correct No solution
Feasible

Does your project have Good Requirements?

137

Rule

All quality requirements must be expressed quantitatively

Typical requirements found:
• The system should be extremely user-friendly
• The system must work exactly as the predecessor
• The system must be better than before

• It shall be possible to easily extend the system’s functionality
on a modular basis, to implement specific (e.g. local) functionality

• It shall be reasonably easy to recover the system from failures,
e.g. without taking down the power

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

70

138

Requirements with Planguage ref Tom Gilb

Definition:
RQ27:
Scale:
Meter:

Benchmarks (Playing Field):
Past:
Current:
Record:
Wish:
Note:

Requirements:
Must:
Must:

Goal:

Maximum Response Time
Seconds between <asking> for information and <appearance> of it.
Add a function to the software to measure the maximum response time value
and the <range of values> per <working day>.

3 sec (our previous product)
0.6 sec [competitor y, product x, 2007] ← Marketing Survey Jan 2007
0.2 sec [competitor x, product y]
0.2 sec [2010] ← customer's head of R&D, 19 Feb 2007, <document ...>
Less than 0.2 sec is not noticed by the user,
so there is no use in trying to be better than 0.2 sec

1 sec [99%] ← project-contract
1.5 sec [100%] ← project-contract
0.5 sec ← project-contract

139

Design to a Quality Requirement

Req 1
Past Must Goal WishRecord

By design

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

71

140

Step-by-step example

Client Client Client Client

CPU

Disk

Server
CPU

Disk

Server
CPU

Disk

Server

network

Gradually reaching required response time

141

Design to a Quality Requirement one step at the time

Req 1
Past Must Goal WishRecord

1 2 3

If the Quality Requirement is composed of several elements,
start with the best ROI

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

72

142

Design to Multidimensional Quality Requirements

Req 2

Req 3

Past

Past Must

Must

Goal

Goal

Req 1
Past Must Goal WishRecord

1

2

4

5

6

7

3

143

Dependability is a Complex Concept

• Availability
Readiness for correct service
Scale: % per [TimePeriod] a [System] is [Available for its Tasks]
Example: The ATM will be available to supply cash 99,9% of the year

8,76 hr down per year...

• Reliability
Continuity of correct service
Scale: Mean time for a [System] to experience [Failure Type] under [Conditions]
Example: The ATM will always (100%) deliver the correct amount of cash

• Safety
No danger, harm, risk
Example: star-system for cars (adult / child, in-car / pedestrian)

• Security
Free from intrusions (theft, alteration)
Scale: Time required to <break into the system>
Example: It will take the <best hackers we can find> >8 hrs to <break in>

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

73

144

Usability.Productivity ref FIRM V9.0

Scale: Time in minutes to set up a typical specified
Market Research (MR) report

Meter: Candidates with knowledge of MR-specific
reporting features performed a set of predefined
steps to produce a standard MR report

Past: 65 minutes

Must: 35 minutes

Goal: 25 minutes
Note: The actual end result was 20 minutes

145

Nice things

• OUT !
• Isn’t paid for
• May not be needed by the customer
• Isn’t checked for consistency
• Doesn’t get tested
• If the customer finds out, you’ll have to support it
• May cause trouble later

• If it’s so important:
• Make it a change request
• Make the customer pay for the extra (nobody else will)
• Better: decide what less important requirement to discard instead
• We can add any requirement, as long as we also delay a less important one

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

74

146

Example: Road-Pricing in the Nederlands

Realise a road-pricing system in four years
• Fitting an electronic system in 8 million cars
• Camera’s for number plate recognition
• Central system for data processing and invoicing
• Law changes by politicians (tax law, traffic law)
• Price differentiation for time, place, emissions

Will this succeed?

147

Requirements exercise: (groups of 2 or 3 people)

• Specify a quality / performance requirement for your
current Project, using Planguage

• Try to use:

Note: you may end up with a different requirement than you started with …

Benchmarks:
• Past
• Current
• Record
• (Wish)

Requirements:
• Must
• Goal

Definition:
• Description
• Scale
• Meter
• Stakeholders

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

75

148

Stakehldrs

Meter

Scale

Req

Wish

Record

Current

Past

Goal

Must

149

Design is always a compromise

• Design is the process of collecting and selecting options how
to implement the requirements

• The Requirements are always conflicting

example:

• Performance

• Budget (time, money)

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

76

150

Design Process

• Collect obvious (voor de hand liggend) design(s)
• Search for one non-obvious design
• Compare the relative ROI of the designs
• Select the best compromise
• Describe the selected design

• Books:
• Ralph L. Keeyney: Value Focused Thinking
• Gerd Gigerenzer: Simple Heuristics That Make Us Smart

151

Impact
Estimation

ref
Tom Gilb
Competitive Engineering

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

77

152

DesignLog (project level)

• In computer, not loose notes, not in e-mails, not handwritten
• Text
• Drawings!
• On subject order
• Initially free-format
• For all to see

• All concepts contemplated
• Requirements
• Assumptions
• Questions
• Available techniques
• Calculations
• Choices + argumentation:

• If rejected: why?
• If chosen: why?

• Rejected choices
• Final (current) choices
• Implementation

Chapter
Requirement → What to achieve
.
Assumptions
Questions + Answers
.
.
.
.
Design options
Decision criteria
Decision → implementation spec

New date: change of idea:
Design options
Decision criteria
Decision → implementation spec

153

ProcessLog (department / organization level)

• In computer, not loose notes, not in e-mails, not handwritten
• Text
• Graphics (drawings)
• On subject order
• Initially free-format
• For all to see

• All concepts contemplated
• Related requirement
• Assumptions
• Questions
• Known techniques
• Choices + argumentation:

• If rejected: why?
• If chosen: why?

• Rejected choices
• Final (current) choices

Chapter
Requirement → What to achieve
.
Assumptions
Questions + Answers
.
.
.
.
Design options
Decision criteria
Decision → implementation spec

New date: change of idea:
Design options
Decision criteria
Decision → implementation spec

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

78

154

Risk Definition

An uncertain event or condition that,
if it occurs,
has a negative effect
on a project’s objectives

(PMBOK)

0% probability is not a risk
100% probability is an issue or a problem

155

Defect and Risk

If a Defect is:
a cause of a problem experienced by a stakeholder
of the system, ultimately by the customer

then
• Not satisfying the Goal is a defect
• Being late may be a defect
• Being over budget may be a defect

Risk is:
an event that may cause a defect

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

79

156

Risk
Model

CPPV ieR ∗∗=

worst
case ?

157

What are Risks in your Projects?

• ...
• ...
• ...

• Are these really Risks?
• 0% probablity is not a Risk
• 100% probability is not a Risk

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

80

158

Controlling Risk by design

• Every project is unique
(otherwise it’s production)

however

• A lot is always the same:
• Every project is done by people
• No project is very much unique
• There are many similarities (known risks)
• So, a lot is predictable
• We know the Requirements will change (but don’t know which)
• Engineers control risks by design (= engineering)

159

Many known risks are hardly risks

• Most of the real risks are in the product

• Most of the known risks are in the project

• We don’t only design the product,

• We also design the project

• If we control 80% of the risks by design

• We have more time to handle the 20% real risks

VRisk = Pevent ∗ Pimpact ∗ C Pevent = 1
Pimpact → 0

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

81

160

Product Risks

• Development
• Requirements errors
• Incorrect Assumptions
• Design errors
• Calculation errors
• Implementation errors

• Maintenance
• Incorrect or insufficient maintenance

• Use
• Operator errors
• User errors
• Victims

Ro
ot

-c
au

se
 o

f s
af

et
y

ri
sk

161

Personnel Shortfalls Boehm 1991

• There are a certain number of people in the
organization

• If we don’t get the people we think we need, they are
working on more profitable activities

• Using TimeLine, we inform management about the
consequences

• This is not risk - it’s choice

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

82

162

Unrealistic schedules and budgets Boehm 1991

• How can we speak about realistic schedules
if the requirements will change anyway?

• If the time/cost budgets are insufficient to get a profit, we
shouldn’t start or continue

• If management/customers insist on unrealistic schedules
(Check), they may need education (Act), or their aim is to fail

• People can quickly learn to change from optimistic to realistic
estimators and thus live up to their promises

• We continuously update the TimeLine to predict what we will
get, what not and what we may get

• Using “Earned Value” for calibration (reflection)
• And “Value still to earn” (preflection)

163

Developing the wrong product Boehm 1991

• Why do we have Requirements?
• We don’t know the real requirements
• They don’t know the real requirements
• First develop the problem, then the solution
• Without feedback we probably are developing

the wrong product
• Rapid feedback is used to optimize the requirements

and check the assumptions

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

83

164

Developing the wrong user interface Boehm 1991

• The goal is making the customer satisfied and more
successful than he already was

• If the users don’t become more productive we fail
• We don’t want to fail
• So we quickly find out what the right user interface

should be

165

Gold plating Boehm 1991

• We do as little as possible at every step
• We specify Must and Plan values
• When we reach the Plan value, we are done
• People tend to do more than necessary, especially if it is

not clear what should be done
• So we define what should be done and what not

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

84

166

Continuing stream of Requirements changes Boehm 1991

• Requirements do change because
• We learn
• They learn
• The market changes

• If we would deliver according to obsoleted
requirements, we don’t create customer success

• We know that requirements will change, so we have to
find out quickly which will change:

• We even provoke requirements change as quickly as
possible

167

Problems with externally furnished components Boehm 1991

• If our FatalDate has come, we have no excuse
• We use Active Synchronization to stay on top

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

85

168

Real time performance shortfalls Boehm 1991

• This is why we have Performance Requirements
• Then we use engineering techniques to make sure the

system is according to the requirements

169

Managers ignorance

• The product has to generate income
• If management impede the workers to produce the

product in the most optimal way ...
• Management usually is not stupid
• But if you don’t supply the right facts ...

• The boss may mess up the Result,
if he’s the owner of the company

• All the others have the option to leave

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

86

170

What is Quality?

I know it when I see it …?

• Should be measurable
• Should be predictable

But ...
ultimately they must like it when they see it

171

Deming - Juran - Crosby

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

87

172

Deming

• Quality comes not from inspection (testing),
but from improvement of the production process

• Inspection (testing) does not improve quality,
nor guarantee quality

• It’s too late

• The quality, good or bad, is already in the product

• You cannot inspect (test) quality into a product

173

Cost of Quality Model Project Cost

Cost of PerformanceCost of Quality

Cost of
NonConformance

Cost of
Conformance

Prevention CostsAppraisal Costs

• Training
• Methodologies
• Tools
• Policy & Procedures
• Planning
• Quality Improvement
 Projects
• Data Gathering &
 Analysis
• Fault Analysis
• Root Cause Analysis
• Quality Reporting

• Reviews
 • System Requirements
 • Design
 • Test Plan
 • Test Procedures
• Walkthroughs
• Inspections
• Testing (First Time)
• IV&V (First Time)
• Audits

• Re-reviews
• Re-tests
• Fixing Defects
 • Implementation
 • Documentation
• Rework
• CCB
• Engineering Changes
• Lab Equipment Costs of
 Retests
• Files Failures Repairs
• Consequences to Name,
 Reputation

• Generation of Plans,
 Documentation
• Development of:
 • Requirements
 • Design
 • Implementation
 • Integration

After Ref. Raytheon in CMU/SEI-95-TR-017

Improvement Initiative

confirm that

it is OK
prevention

too late

this is what

it is all about

learn!

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

88

174

Defects

• A design does not have bugs, it has defects

• Defects do not emerge

• People make errors and thus cause defects

• Changing a requirement causes a lot of defects

Perfect
Requirements

finish

175

Are defects a problem for you?

• Which types of defects?

• How do you know?

• Perhaps there are problems you don’t know?

• What can we do about it?

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

89

176

Debugging ? ? ?

177

The process of defect injection and detection

Conventional software development:
1. Development phase: inject bugs
2. Debugging or Testing phase: find bugs and fix bugs

Can’t we do better, or are we already doing things
better?

Real Engineering is
doing (most) things First Time Right

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

90

178

??

179

Bugs are so important

• “Software without bugs is impossible”
• Bugs are counted
• We try to predict the number of bugs we will find
• It is suspect if we don’t find the expected number
• Bugs are normal
• What would we do if there were no bugs any more?

As long as we keep focusing on bugs, there will be bugs

, are they really?

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

91

180

Defects found are symptoms of deeper problems

Repairing apparent defects creates several risks:
• Repair is done under pressure
• We think the problem is solved
• We introduce scars
• We keep repeating the same problems
• After finding the real cause, the redesign may make

the repair redundant: time lost

Root cause analysis is an investment

181

Defects typically overlooked

• Functions that won’t be used (superfluous requirements)
What’s the use of repairing defects in the code of these requirements?

• Nice things (not checked, not paid for)
Shouldn’t be there in the first place

• Missing quality levels (should have been in requirements)
Checking the implementation of the documented requirements won’t help

• Missing constraints (should have been in requirements)
Product could be illegal

• Unnecessary constraints (not required)
What would testing say about these?

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

92

182

Ways to achieve quality in software ?

• Hope??
• Test?
• Debug??
• Review?
• Walkthrough?
• Inspection?

Prevention

183

RI/CR/PR Database

• Risk Issues
RI: prevention

• Change Requests
CR: customer pays

• Problem Reports
PR: you pay

• Where, what, when, who
• Urgency, severity
• Classification
• Status

• Where caused and root cause
• Where should it have been found

earlier
• Why not found earlier
• Prevention plan
• Analysis tasks defined and put on

Candidate Task List
• Prevention tasks defined and put on

Candidate Task List
• Check lists updated for finding issues

easier, in case prevention doesn’t work
yetFocus on

“Repair”

Focus on
Prevention

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

93

184

Dijkstra (1972)

• It is a usual technique to make a program
and then to test it

However:
• Program testing can be a very effective way to show

the presence of bugs
• but it is hopelessly inadequate for showing their absence

Conventional testing:
• Pursuing the very effective way to show the presence of bugs

The challenge is, however:
• Making sure that there are no bugs
• And how to show their absence if they’re not there

185

So, no testing?

• Testing is important
however

• Goal should not be defect finding
• But rather measuring the quality of the production

process

Testing is to check that it works correctly

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

94

186

Testing is checking correctness

Process Check

Act

1. How can we prevent this ever happening again?
2. Why did our earliest sieve not catch this defect?

1 2

187

Let’s move

Let’s move from
• Fixation to Fix
to
• Attention to Prevention

• If we don’t deal with the root, we will keep making the same
mistakes over and over

• Without feedback, we won’t even know
• With quick feedback, we can put the repetition to a halt

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

95

188

Do you ever make a mistake?

• Making mistakes is human
• We are humans

If we think we are done
there are still defects

189

Costs of defects

The longer a defect stays in the system,
the more it costs to repair

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

96

190

Cost of Requirements Defects

0

20

40

60

80

100

Reqs

Field

Reqs
Test
Field

Boehm,
1980s

Remus,
1980s

Kan,
1994

Hevner,
1997

Mean

Test

DM

191

Inevitable consequence

People make
mistakes

We are people

Repair of problems costs
exponentially more

if found later

If we do something,
we introduce problems

So, when to solve
the problems?

Immediately after
making the mistake.

So, when to solve
the problems?

Immediately after
making the mistake,
or even preferably:

by preventing mistakes

So, when to solve
the problems?

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

97

192

Typical Defect Injectors (cost breakdown)

7%
10%

28%

55%

After Bender Associates, 1996

DM

DesignersImplementers

Requirements Specifiers

Other

193

Documentation

• Wish specification Thank you, nice input

• Business Case Why we are doing it

• Requirements What the project agrees to satisfy

• DesignLog Selecting the ‘optimum’ compromise

• Specification This is how we are going to implement it

• Implementation Code, schematics, hardware, documentation,
training

• Process Log Describing how and why you arrived at which
current practices

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

98

194

Every Result has a Source

Business case

Requirements Design Implement

source sourcesource

Wish spec

source

195

Are you reviewing?

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

99

196

A typical Review ...

DG

• The document to be reviewed is given out in advance

• Typically dozens of pages to review

• Instructions are "please review this"

• Some people have time to look through it

• Review meeting often lasts for hours

• Typical comment: "I don't like this"

• Much discussion, some about technical approaches, some about trivia

• Don't really know if it was worthwhile, but we keep doing it

• Next document reviewed will be no better

197

Inspection is different

• The document to be reviewed is given out in advance

• Typically dozens of pages to review

• Instructions are "please review this"

• Some people have time to look through it

• Review meeting often lasts for hours

• Typical comment: "I don't like this"

• Much discussion, some about technical approaches, some about trivia

• Don't really know if it was worthwhile, but we keep doing it

• Next document reviewed will be no better

chunk or sample

training, roles

entry criteria to meeting, may be not worth holding

Best Practice rules - Rules are objective, not subjective

no discussion, highly focused, anti-trivia

exit criteria - continually measure costs and benefits

not just product - rules to define defects, other docs to check against

2 hr max

most important focus is improvement in processes and skills

DG

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

100

198

Inspection

• Most rigorous form of review
• Pioneered by Fagan (IBM) (paper 1976)

• Locating all the defects in a work product

• Introduction of Inspection economics: Gilb/Graham (Software Inspection, 1993)

• Quantifying the defect density of a work product and preventing poor quality work
from moving downstream

• Is not the same as review
• Use:

• Walkthroughs for training
• Technical Reviews for consensus
• Inspections to improve the quality of the document and its process
• Gate Reviews to decide what to do with it

Would you like to base further work or decisions
on a document of unknown quality?

199

A ready to use recipe …

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

101

200

Inspection goals and effects

• Identify and correct major defects

• Most important:
Identify and remove the source of defects

• Consequence:
Education and interaction:
How should we generate documents in the first place?

• Interesting side-effect:
People get to know each others documents efficiently

201

Gilb/Graham
Inspection

Process

Plan

Process
Improvem
Proposal

Change
Req

Kick
off

Check Log
Edit +

Follow-
upE

n
tr

y

E
xi

tProduct
doc

Product
doc

Source
docs

Kin
docs

Inspection

Data
Colletion

Rules

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

102

202

Inspection
Process
Steps

Entry

Planning

Kickoff

Checking

Logging

Brainstorm

Edit

Follow-up

Exit

?

Overview

Preparation

Inspection

Rework

Follow-up

Gilb/GrahamFagan

Entry

Planning

Checking

Edit

Check/Act

Exit

Simple Review

203

Gilb/Graham Concepts
Entry and Exit Criteria

Once the quality level of a specification is known, there
are three possible paths forward:

D
ef

ec
t D

en
si

ty

Meets exit criteria: Success! Exit

Somewhat above exit criteria: Rework
or enlarge inspection sample

Well above exit criteria: Process failure!
Recreate after training or process
improvement

ES

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

103

204

16 page
Inspection
Manual

205

Cost of Quality

0%

10%

20%

30%

40%

50%

60%

1988 1989 1990 1991 1992 1993 1994 1995

%
 P

ro
je

ct
 C

os
t

Ref. Raytheon in CMU/SEI-95-TR-017

Start of Effort

Bad Process
Change

Individual
Learning

Effect

% Cost of Conformance

% Cost of NonConformance

% Cost of Quality

Cost of
Doing it Right

Cost of
Doing it Wrong

Cost of
Quality

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

104

206

Productivity gains

0%

10%

20%

30%

40%

50%

60%

1988 1989 1990 1991 1992 1993 1994 1995

%
 P

ro
je

ct
 C

os
t

Ref. Raytheon in CMU/SEI-95-TR-017

Start of Effort

Cost of
Doing it Right

Cost of
Doing it Wrong

Cost of
Quality

10%

20%

30%

40%

50%

60%

70%

80%

Factor 2.3

207

Agile Inspection / Early Inspection
Prevention costs less than Repair

Completeness

0%
(Rev 0.1)

100%
(Rev 1.0)

Initial
Review

Additional Reviews
(Author’s Discretion)

Specification
Quality

Assessment

…

50%

ES

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

105

208

Why Early Inspection Works

• Many defects are repetitive and can be prevented
• Early review allows an author to get independent

feedback on individual tendencies and errors

• By applying early learning to the rest (~90%) of the
writing process, many defects are prevented before
they occur

• Reducing rework in both the document under review
and all downstream derivative work products

ES

209

Case Study 1 - Situation

Large e-business integrated application with 8
requirements authors, varying experience and skill

• Each sent the first 8-10 requirements of estimated 100 requirements per
author (table format, about 2 requirements per page including all data)

• Initial reviews completed within a few hours of submission

• Authors integrated the suggestions and corrections, then continued to
work

• Some authors chose additional reviews; others did not

• Inspection performed on document to assess final quality level

ES

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

106

210

Case Study 1 - Results

• Time investment: 26 hr
• 12 hours in initial review (1.5 hrs per author)
• About 8 hours in additional reviews
• 6 hours in final inspection (2 hrs, 2 checkers, plus prep and debrief)

• Major defects prevented: 5 per requirement in ~750
total requirements

• 5 x 750 x 10 hr = 37500 hr / 3 = 12500 x $50 = $625000

3Average major defects per requirement in completed
document

8Average major defects per requirement in initial review

ES

211

Case Study 2 - Situation

A tester’s improvement writing successive test plans:
• Early Inspection used on an existing project to improve test plan quality

• Test plan nearly “complete”, so no initial review possible

• First round, inspected 6 randomly-selected test cases

• Author notes systematic defects in the results, reworks the document
accordingly (~32 hrs.)

• Second round, inspected 6 more test cases; quality vastly improved

• Test plan exits the process and goes into production

• The author goes on to write another test plan on the next project…

ES

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

107

212

Case Study 2 - Results

• Time investment: 2 hours in initial review, 36 hours total in
inspection, excluding rework (2 inspections, 4 hrs each,
4 checkers, plus prep and debrief)

• Test plan in use yielded over 1100 software defects with only 1
defect (0.1 %) closed as “functions as designed”

• Historical rates were closer to 25% of all defects, with 2-4 hrs
spent on each. Time saved on the project: 500 - 1000 hrs

Defect Prevention in action: First inspection of
this tester’s next test plan: 0.2 major defects per test case

0.5 major defects per test caseSecond round

6 major defects per test caseFirst round inspection

ES

213

Early Detection vs. Prevention

Denise Leigh (Sema group, UK), British Computer Society address,1992:

8-work-year development, 5 increments over 9 months found
• 3512 defects through inspection
• 90 through testing
• 35 (incl enhancement requests) through product field use

After two evolutionary deliveries, unit testing of programs was
discontinued because it was no longer cost-effective

Nice job! Early detection has big benefits - BUT…

How many of the 3512 defects found in end-of-line inspections could
have been completely prevented by Early Inspection?

Cost-effective defect prevention is the bottom line

ES

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

108

214

Optimum Checking Rate

• The most Effective individual speed for ‘checking a document
against all related documents’ in page/hr

• Not ‘reading’ speed, but rather correlation speed
• Failure to use it, gives ‘bad estimate’ for ‘Remaining defects’

• 100~250 SLoC per hour
• 1 page of 300 words per hour (“logical page”)

TG

215

Optimum checking rate

Here’s a document: review this (or Inspect it)

Ref. Dorothy Graham

DG

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

109

216

Review “Thoroughness”?

• Ordinary review
• Find some defects, one Major
• Fix them
• Consider the document now corrected and OK ...

major
minor

minor

Ref. Dorothy Graham

DG

217

Inspection Thoroughness

• Inspection can find deep-seated defects

• All of that type can be corrected

• Needs optimum checking rate

• In the above case we are clearly taking a sample

• In the “shallow” case we we’re also taking a sample,
however, we didn’t realize it !

Ref. Dorothy Graham

DG

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

110

218

Cleanroom Software Development

• Design (Mathematical proof)
• Verification (by others)
• Implementation
• Verification (by others)
• No unit test
• Only Integration Test (by others)

(Test is Running Code)

• Verification is for finding defects
• Testing is for not finding defects

219

Cleanroom (ref Allan M. Stavely: Toward Zero Defect Programming)

• The purpose of Inspection is to eliminate defects
• Exit criterion for design:

• One design statement materializes as 3 to 10 code statements

• Checklists of typical errors we make
• No Unit Test - Developer does not run software !
• Testing:

• Finding as many of the remaining defects as possible
• Too many errors discovered

→ previous steps are not being done properly
→ redo previous steps (not just “repair”)

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

111

220

Testing in Cleanroom

• Testing is an important part of the process, but it is done only
after verification is successfully completed

• Testing is done:
• Primarily to measure quality
• Secondarily to find defects that escaped detection during verification

• Number of bugs per thousand lines of code <10 after verification,
compilation and syntax checking

• Very good teams produce 2.3 bugs per kloc and reject code with
4 or 5 bugs per kloc

• No attempt is done to try to salvage rejected code by debugging
• The code is sent back to the developers to be rewritten and reverified
• Then it is tested as a completely new product

• Usage based testing
• Risk based testing

221

Experiments

• But ... I have to experiment to find out how to do things

• An Experiment is for finding out how to do something
• Code generated in an Experiment shall be thrown away
• We don’t want scars in our production code
• Once we know how to do it, we use that knowledge in

the design
• Coding is a one-to-one translation of the design into

implementation

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

112

222

Evo Testing

• Final validation shouldn’t find any problems

• Earlier verifications mirror quality level to developers:
how far from goal and what still to learn

• Evo has no debugging phase!

223

Further Improvement

• Testers focus on a clear goal

• Finding defects is not the goal

• The Goal is Project Success

• Tester’s customer is “the developers”

• Testers select and use any method appropriate

• Testers check work in progress even before it is finished

• Testers solve the Review and Inspection organizing problem

• Testing is organized the Evo way, entangling intimately with
the development process

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

113

224

Evo cycles
for Testing

• Testers organize their work in weekly TaskCycles
• DeliveryCycle is the Test-Feedback cycle
• Testers use their own TimeLine, synchronized with the

developers TimeLine
• Testers conclude their work in sync with developers
• Testers check work in progress even before it is finished

225

Succesvol Plannen van Softwareprojecten

• Business case: waarom doen we het: doen we het juiste
• Requirements: wat doen we daartoe in dit project
• Design: wat is de beste oplossing
• Implementatie: uitvoeren van de beste oplossing
• Review & Inspectie: voeden van het preventieproces
• PDCA: continu verbeteren: product, project en proces
• Risico: vaak geen echt risico
• Wekelijkse TaakCyclus: organiseren van het werk
• Tweewekelijkse DeliveryCyclus: zijn we op de juiste weg
• TimeLine: beheersen en optimaliseren van tijdbesteding
• Zero Defects houding
• 5 x Waarom?

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

114

226

Basic Simple Requirements Inspection

• Use these Rules:
1. Unambiguous to the intended readership
2. Clear to test
3. No Design

• A Defect is a violation of a Rule
• Check for Major Defects

• Major means > 10 hours cost to find and repair if found later

• Take one page
• How many Majors did you find on this page?

227

Huiswerk

• Verzamel gegevens om je TimeLine beter te maken
• Kun je een eerste Delivery definieren?

• Wat gaan we leveren, aan wie en waarom?

• Analyseer de resultaten van je weekplanning (Check)
• Bedenk hoe je nog beter kan werken (Act)
• Bepaal je nieuwe weekplanning op basis van

• Je TimeLine
• Wat je geleerd hebt van je vorige weekcyclus resultaten

• Kun je je TimeLine al calibreren met wat er in de week
gebeurt?

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Boekjes:
www.malotaux.nl/nrm/pdf/MxEvo.pdf www.malotaux.nl/nrm/pdf/Booklet2.pdf
www.malotaux.nl/nrm/pdf/EvoTesting.pdf www.malotaux.nl/nrm/pdf/EvoRisk.pdf
www.malotaux.nl/nrm/pdf/TimeLine.pdf

115

228

Niels Malotaux N R Malotaux
Consultancy

030-228 88 68 niels@malotaux.nl www.malotaux.nl/nrm

Can you affordCan you afford
not to use Evo?not to use Evo?

Dag2

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

 Meer informatie:
 www.malotaux.nl/nrm/Evo

116

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Task Cycle Plan
Name

Taskcycle Available plannable hrs

project delivery
due

task
due hrs tsk

sht done description

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

TaskSheet for week Assigned to Estimated duration

Task description

 Requirements for this task to be used as reference for verification
• Functions (what should it do?)

• Qualities (how well should it do it) State definitions of e.g. “usability”, “user-friendly”, “response time”, etc.
Don’t state trivial qualities of your work, like “no bugs”, or “no leaks”: your work is supposed to be Quality On Time.
That is, simply the right things, simply within the time agreed.

• Constraints

 Which activities must be done to realize the requirements stated? What has to be done before I can
say “It is completely finished, I don’t have to think about it any more”. If the task is a modification, state what modifications
have to be done.

 Implementation details (how am I going to implement it)

 Verification approach – test design
How can I make sure that it does what it should do and that it does not do what it should not do.

 Planning (in which order am I going to do things to move efficiently towards the final result?)
What to do first, what to do then: evolutionary steps, no big bang

 Is everything really clear?

 Have this document (and related docs, if any) reviewed
 Clarify any unclearness until everything is clear and agreed with the reviewer
 Detail the design
 Convert the detailed design to code
 Verify against the written requirements (not less, not more) and against the design

according to the defined test. Comments:

 Checklist for 100% done:
 The code compiles and links with all files in integration promotion level
 The code simply does what it should do: no bugs
 There are no memory leaks
 Defensive programming measures have been implemented
 All files are labeled according to the rules agreed
 File promotion is done
 I feel confident that the tester will find no problems

 Project manager is informed about task completion

Niels Malotaux
IKD training lente 2008

Succesvol Plannen van Softwareprojecten

