Oak Café - 29 ${ }^{\text {st }}$ March 2023

The INCOSE
Systerns Exchange Cafe
Weicorrie!

Hosted by: Riels Malotaux
How to be on time (with system development projects)

How Space Systems Engineers learnt to meet all deadlines or How to be on time

Niels Malotaux

Cobb's Paradox (1995):
We know why projects fail
We know how to prevent their failure
So why do they still fail?

niels@malotaux.eu

www.malotaux.eu/conferences

Niels Malotaux

- Independent Engineering and Team Coach
- Expert in helping projects and organizations to quickly become
- More effective - doing the right things better
- More efficient - doing the right things better in less time
- More predictable - delivering as needed
- Getting projects back on track
- Embedded Systems architect (electronics/firmware)
- Project types
electronic products, firmware, software, space, road, rail, telecom, industrial control, parking system

Delivering

 uality On Time the Right Results at the Right Time
incose Happy customers

- From one happy customer to another one
- We will be late and we don't want to be late
- We cannot afford to be late
- When the money is used up, there is no more

INCOSE

Earth observation instrument

incose In short

- Very experienced Systems Engineers

- Using quantified requirements routinely
- 6 year waterfall project (imposed by ESA process)
- Don't know exactly where they'll end up
- One problem: They missed all deadlines (can you help us)
- 9 weeks later: They haven't missed any deadline since
- "Sorry, we delivered 1 day early" (instead of expected 1 year late)
- Savings: at least 40 man-year (about $\epsilon 6 \mathrm{M}$?)
- How did they do that?

INCOSE

incose Convincing the Project Manager

With CTO:

- Don't put me on the training budget
- Put me on the project budget

With Project Manager:

- We've been doing this kind of projects for 27 years
- We're very good at it
- What do you think you can contribute to that ?
- Anything to deliver by the end of the week ?

Time needed?	about 2 more hours
What still to do?	getting input from 6 people
How?	email
Always immediate reply?	no
Time per person?	email, reminder, going there, getting status, check again, compile in report
...	1.5 hr per person
6 people?	$6 \times 1.5=9$ hr
How much available?	I'm very busy! Perhaps 4 hr left
Will we succeed?	You can coach the team (get off my back!)

incose Issues

- Many interdependent Deadlines

- Many unforeseen issues, resulting in significant changes
- Delay declared unacceptable by customer
- Launch date fixed
- Money fixed
- Team overstressed, no clear focus on tasks at hand
- Everything 80\% complete, nothing 100%

The essential ingredient: the PDCA Cycle

(Shewhart Cycle - Deming Cycle - Plan-Do-Study-Act Cycle - Kaizen) www.malotaux.eu/?id=PDCA

- Plan-Do-Check-Act
- The powerful ingredient for success
- Business Case
- Why we are going to improve what
- Requirements Engineering
- What me aregoing to impraxe anewhat not
- Howphuch we witfimprove: quantification
- Arehritectrpe and Design

sult
What
How much
Are we done
- Selecting the optimum compromise for the conflicting requirements
- Early Review \& Inspection
- Meascuring quality while doing, Pearning to preventaming the wrong things

Evolutionary Project Management elements (Evo)
www.malotaux.eu/?id=processes

- Tom Gilb

Evo Project Planning - Niels

- Weekly TaskCycle C S

Check and learn as early as possible Efficiency
of what we do

- Optimizing estimation
- Promising what we can achieve
- Living up to our promises
- Bi-weekly DeliveryCycle
- Optimizing the requirements and Enecking the assumptions
- Soliciting feedback by delivering ReafResults to eagerly waiting Stakeholders
- TimeLine
- Getting and keeping control of Time: Predicting the future
- Feeding program/portfolio/resource management
- Short term planning

INCOSE
 Requirements weren't the problem

- Requirements for tropospheric O3
- Ground-pixel size: $20 \times 20 \mathrm{km2}$ (threshold); $5 \times 5 \mathrm{km2}$ (target)
- Uncertainty in column : altitude-dependent
- Coverage : global
- Frequency of observation : daily (threshold); multiple observations per day (target)
- Requirements for stratospheric O3
- Ground-pixel size : $40 \times 40 \mathrm{km2}$ (threshold); $20 \times 20 \mathrm{km2}$ (target)
- Uncertainty in column : altitude-dependent
- Coverage : global
- Frequency of observation : daily (threshold); multiple observations per day (target)
- Requirements for total O3
- Ground-pixel size : $10 \times 10 \mathrm{km2}$ (threshold); $5 \times 5 \mathrm{km2}$ (target)
- Uncertainty in column : 2%
- Coverage : global
- Frequency of observation : daily (threshold); multiple observations per day (target)

- Plan-Do-Check-Act
- The powerful ingredient for success
- Business Case
- Why we are going to improve what
- Requirements Engineering
- What we are going to improve and what not
- How much we will improve: quantification

What

- Architecture and Design

Are we done

- Selecting the optimum compromise for the conflicting requirements
- Early Review \& Inspection
- Measuring quality while doing, learning to prevent doing the wrong things

Check and learn as early as possible

Evo Project Planning - Niels

- Short term planning
- Optimizing estimation
- Promising what we can achieve

Efficiency

- Living up to our promises
- Bi-weekly DeliveryCycle
- Optimizing the requirements and checking the assumptions
- Soliciting feedback by delivering Real Results to eagerly waiting Stakeholders
- TimeLine
- Getting and keeping control of Time: Predicting the future
- Feeding program/portfolio/resource management

incose Tasks feed Deliveries

incose Weekly TaskCycle

- Are we doing the right things, in the right order, to the right level of detail for now
- Optimizing estimation, planning and tracking abilities to better predict the future
- Select highest priority tasks, never do any lower priority tasks, never do undefined tasks
- There are only about 26 plannable hours in a week (2/3)
- In the remaining time: do whatever else you have to do
- Tasks are always done, 100% done

INCOSE
 Weekly Plan

- How much time do we have available
- 2/3 of available time is net plannable time
- What is most important to do

\varnothing	
Taska $2 \uparrow$	
Task $_{\text {b }} 5$	
Task ${ }_{\text {c }} 3$	
Task $_{\text {d }} 6$ do	
Taske 1	
Task $_{f} 4$	
Taskg	526
Task $_{h}$ 4 do Task $_{j}$ 3 not Task $_{k}$ 1	

- Estimate effort needed to do these things
- Which most important things fit in the net available time (default 26 hr per week)
- What can, and are we going to do
- What are we not going to do
$2 / 3$ is default start value this value works well in development projects

incose Weekly planning

- Individual preparation
- Conclude current tasks
- What to do next
- Estimations
- How much time available
- Modulation with / coaching by Coach / Team Lead / Peer(1-on-1)
- Status (all tasks done, completely done, not to think about it any more ?)
- Priority check (are these really the most important things ?)
- Feasibility (will it be done by the end of the week ?)
- Commitment and decision
- Synchronization with group (team meeting)
- Formal confirmation (this is what we plan to do)
- Concurrency (do we have to synchronize ?)
- Learning
- Helping
- Socializing

INCOSE
 Why is this important?

- TaskCycle Planning is not just planning the work for the coming week
- Half ($\pm 30 \%$) of what people do in projects later proves not having been necessary \rightarrow using Prespectives
- During the TaskCycle planning we can very efficiently see
- What our colleagues think they're going to do
- Make sure they're going to work on the most important things, in the right order
- Not on unnecessary things, or wrong order
- In line with the architecture and design
- Leading most efficiently to the goal of the delivery
- Everyone in the project-team knows what the others will do

We see issues before they become a problem, saving time

incose Awful schedule pressure!

per doc		hr
4 heavy	15	60
3 easy	2	6
other work total		66
		33
	total	99

available	2×26	52

	Doc 1	Doc 2	Doc 3	Doc 4	Doc 5	Doc 6	Doc 7
John	x		x	x	x	x	
Samuel	x	x		x		x	x
Paul	x	x	x	x	x	x	x
Michael	x			x	x		
Marc			x	x		x	x

- How many documents to review ?
- How much time per document ?
- Some suggestions ...

- Result: well reviewed, great meeting, everyone satisfied

incose Biweekly DeliveryCycle

- Are we delivering the right things, in the right order, to the right level of detail for now
- Optimizing requirements and checking assumptions
- Better assume our assumptions may be incorrect
- Suppliers: We better assume that their assumptions may be incorrect
- What will generate optimum feedback
- We deliver to eagerly waiting stakeholders
- Delivering 'juicy bits’, if we have to make them eagerly waiting
- Not more than 2 weeks

INCOSE
 TimeLine

How do we know that we do, and get, what is needed, when it's needed?

INCOSE What do we do if we see we won't make it on time ?

- Value Still to Earn

versus

- Time Still Available

If the match is over, we cannot score a goal

Even more important:

Starting Deadlines

Starting deadline

- Last day we can start to deliver by the end deadline
- Every day we start later, we will end later

incose Deceptive options

- Hoping for the best (fatalistic)
- Going for it (macho)
- Working overtime (fooling ourselves and our boss)
- Moving the deadline
- Parkinson's Law
- Work expands to fill the time for its completion
- Student Syndrome
- Starting as late as possible, only when the pressure of the deadline is really felt

Intuition often guides us into the wrong direction

INCOSE

Adding people ?

Brooks' Law (1975)

Adding people to a late project makes it later

Saving time

- We don't have enough time, but we can save time without negatively affecting the Result !
- Efficiency in what (why, for whom) we do - doing the right things
- Not doing what later proves to be superfluous
- Efficiency in how we do it - doing things differently
- The product
- Using proper and most efficient solution, instead of the solution we always used
- The project
- Doing the same in less time, instead of immediately doing it the way we always did
- Continuous improvement and prevention processes
- Constantly learning doing things better and overcoming bad tendencies
- Efficiency in when we do it - right time, in the right order

- TimeBoxing - much more efficient than FeatureBoxing

Did it work for this project ?

- 2 months needed to get the process in full swing
- All Engineering docs in PDR and CDR data packages on time
- Stress level in team greatly reduced
- More supervisory work for Systems Engineer - can effectively handle up to 8 people
- People not in the Evo swing lag behind
- So, we need everyone to follow
- Good enough to become company standard ? I say YES

Why did it still take so long before actual launch ?

- The launch was delayed caused by issues you cannot predict even with the Evo approach:
- The launch SW from the Ukraine, bought by ESA 5 years ago was to be used in Russia Incomprehensibly, that was a bit more difficult than it was 5 years earlier
- By now the problems seem to have been solved and the launch is planned for March/April ...
- New Deadline: August... (Finally launched 13th October 2017)
- Coincidentally I just today introduced our Evo way of working to a new team member of our current project (mapping the large-scale structure of the Universe over a cosmic time covering the last 10 billion years)
- I'm curious to find out how quickly she'll really get the idea

How Space Systems Engineers learnt to meet all deadlines

Niels Malotaux
niels@malotaux.eu
www.malotaux.eu/conferences

Would this help you to deliver better results in less time ? Or do you have a better suggestion ?

