About SE - Training

Systems Engineering and Project Management are core engineering disciplines used to enable the delivery of complex projects within schedule and cost expectations.

Delivering complex projects demands cross-functional engineering disciplines such as Systems Engineering, Project Management, Safety Engineering, Product Development and Design Thinking.

SE-Training has been founded to offer specifically tailored solutions that support the drive, ambition and success in providing innovate and high quality products and services.

There are a high number of engineering organisations based across Europe with diverse needs; SE-Training addresses these unique needs through expert project coaching, process development, enterprise organisational design \& training courses provided by expert engineering professionals and academics.

5E-TRAINING
www.se-training.net

Presenter

Niels Malotaux

Project and Organizational 'Quality on Time' Coach
Helping projects and organizations to quickly become

- More effective - doing the right things better

Result
 Management

- More efficient - doing the right things better in less time
- Predictable - delivering as needed

Getting projects back on track (project rescue)
Embedded Systems architect (electronics/firmware)
Project Types: Electronic Products, Firmware, Software, Space, Railway, Telecom, Industrial Control, Parking System

SE-TRAINING

The Evolutionary Approach for delivering Ouality on Time

The Right Results at the Right Time

Niels Malotaux

ChatGPT:
Maximizing Quality and Efficiency: Achieving On-Time Delivery

Quality on Time

The ultimate goal of what we do for our salary

- Delivering the Right Results at the Right Time, wasting as little time as possible (=efficiently)
- Providing the customer with:
- What they need
- At the time they need it
- To be satisfied
- To be more successful than they were without it
- Constrained by:
- What the customer can afford
- What we mutually beneficially and satisfactorily can deliver
- In a reasonable period of time

SE-TRFINING

Quality on Time

- Do your projects deliver
the Right Results at the Right Time?
- Right Results?
- How do you know?
- Right Time?
- Really?
- Any incentive to improve ?

How to be on time?

Deceptive options

- Hoping for the best (fatalistic)
- Going for it (macho)
- Working overtime (fooling ourselves)
- Moving the deadline
- Parkinson's Law
- Work expands to fill the time for its completion
- Student Syndrome
- Starting as late as possible, only when the pressure of the FatalDate is really felt

Intuition often guides us into the wrong direction

EE-TRFININE www.se-training.net

How to be on time ?

Adding people

Brooks' Law (1975)

Adding people to a late project makes it later

SE-TRFINING
www.se-training.net

Saving Time

We can save time, without negatively affecting the result!

Efficiency in what, why, for whom
we do

- Doing the right things
- NOT doing what later proves to be not needed

Efficiency in how

 we do it- Doing things differently
- The Product

Using the proper and most efficient solution, instead of the solution we always used

- The Project

Doing the same in less time, instead of immediately doing it the way we always did

- Continuous
improvement and prevention processes

Constantly learning to do things better, and overcoming bad tendencies

Efficiency in when we do it

- At the right time
- In the right order

Time Boxing

- Much more efficient than Feature Boxing!

Continuous elimination of waste

How to feed Evolution

Plan - Do - Check - Act: The Powerful Ingredient for Success

How to feed Evolution

PL - Do : The intuitive cycle

Act

- What are we going to do differently?
- We are going to do it differently !

Check

- Result
according to plan?
- Achieved according to plan?

Plan

- What to achieve
- How to achieve it

How to feed Evolution

Plan - Do - Check - Act: The Powerful Ingredient for Success

How to feed Evolution

Plan - Do - Check - Act: The Powerful Ingredient for Success

How to feed Evolution

Plan - Do - Check - Act: The Powerful Ingredient for Success

Act
 - What are we going to do differently?
 - We are going to do it differently !

Check

- Result according to plan?
- Achieved according to plan?

Plan

- What to achieve
- How to achieve it

Do

- Carry out the plan

How to feed Evolution

Plan - Do - Check - Act: The Powerful Ingredient for Success

How to feed Evolution

Plan - Do - Check - Act: The Powerful Ingredient for Success

Act

- What are we going to do differently?
- We are going to do it differently !

Check

- Result
according to plan?
- Achieved according

Plan

- What to achieve
- How to achieve it to plan?

Do

- Carry out the plan

Evolutionary Project Management (Evo)

Plan-Do-Check-Act on every level

- Zero Defects

- Prevention costs less than repair

- Business Case

- Why are we going to improve what?
- Requirements Engineering
- Weekly Task Cycle
- Short-Term Planning
- Optimising Estir@tion
- Promisinginf Me dar achieve
- Living up to o iprushises

How much?
Are we done?
Attitude

Why?
What?

- What are we going to improve, and what not?
- How much will we improve? - Quantification
- Architecture and Design
- Selecting the optimum compromiseforthe conflicting requirements
- Early Review andinso jction

Time Line

How do we know that we get what is needed when it's needed?

Better 80\% 100\% done, than 100\% 80\% done

Let it be the most important 80\%

Starting Deadlines

More important to focus on than final deadlines

Starting Deadline

- Buying trains from the catalogue, but some changes
- Cannot change everything: limited set of focus areas
- Example:

Lifting train for maintenance

- Supplier - lift
- Maintenance - cable

- How much time left?

Supplier people already working on the final design

- What still to do? Does that fit the available time?

Talk to our maintenance, talk to supplier, decision, agreement

- Why waste your time?
- What is Plan B ?

Evolutionary Project Management (Evo)

Plan-Do-Check-Act on every level

- Zero Defects

- Prevention costs less than repair

- Business Case

- Why are we going to improve what?
- Requirements Engineering
- What are we going to improve, and what not?
- How much will we improve? - Quantification
- Architecture and Design
- Selecting the optimum compromisefforthe conflicting requirements
- Early Review andinso ection

Attitude

What?
How much?
Are we done?

How?

- Measuring quality yhile doing, learning to prevent doing thewurng things.
- Promisinginf पe dapachieve
- Weekly Task Cycle
- Short-Term Planning
- Optimising Estir@tio
- Living up to o prunises

2 Keekly Delivery cycle
Oktimising the requirements Effectiveness of what we do and checking assumptions

- Soliciting feedback by delivering real results to eagerly waiting stakeholders
- Timeline What will happen and what will we do about it?
- Getting and keeping control of time: predicting the future

Weekly TaskCycle

What are we going to do, what not, and why

Removing waste before time spent

- Are we going to do the right things?
- In the right order
- To the right level of detail for now
- Optimising estimation, planning, and tracking abilities
- To better predict the future
- Selecting the highest priority tasks
- Never any lower priority tasks
- No undefined tasks
- There are only about 26 plannable hours in a week (default 2/3)
- In the remaining time, we do whatever else we have to do
- Tasks are always done, 100\% done

Weekly plan

What are we going to do, what not, and why

Weekly Plan

- What should we have achieved by the end of the week
- How much time do we have available
- $2 / 3$ of available time is net plannable time
- What is most important to do, to achieve successfully
- Estimating effort needed to do these things
- Which most important things fit the available time
- Default 26 hours per week
- What can, and are we going to do
- What are we not going to do

cycle	who	task description	estim	real	done	issues			TaskCycle Analysis (retrospective)	23
3	John	Net time available: 26								
		aaaaaaaaa	3	3	yes					
		bbbbbbbb [Paul]	1							
		cccccccccc	5	13	yes					
		dddddddd	2							
		eeeeeeee	3	2					learning	
		ffffffffffff	2	1						
		ggggggggg	6	7	yes					
		hhhhhhhh	4							
			26	26						
4	John	Net time available: 26								
		jjijijjjjijjjj	3			for proj x			TaskCycle Planning	
		kkkkkkkkk	1			for $\operatorname{proj} x$				
		mmmmm	5			for proj x				
		nnnnnnnn	2			for $\operatorname{proj} x$				
		pppppppp	3			for proj y				
		qqqqqqqqq	12			for proj y				
		rrrrrrrrrrrr	6			for proj y			(presepective)	
		ssssssssss	4			for proj y				
		tttttttttttt	4							
			40							

SE-TRFINING
www.se-training.net

Weekly Planning

Optimising Time Spent on Planning

Individual Preparation

- Conclude current tasks
- What to do next
- Estimates
- How much time is available

Modulation / coaching 1-on-1

- Status - Learning
- Previous tasks done, completely done, no need to think about it anymore?
- Priority Check
- Are the new tasks really the most important things?
- Feasibility
- Will it be done by the end of the week?
- Commitment and Decision

Synchronisation with group (team meeting)

- Synchronisation
- Concurrency
- Do we have to synchronize?
- Formal Confirmation
- This is what we plan to do
- Learning
- Helping
- Socialising

New Oscilloscope Platform

- 4 teams of 10 people, 8 more people in Bangalore
- Introduced first in one team
- Other teams followed after a few weeks
- One team lagged because fear of 'micro-management'

Heard at 1-on-1:

- Wow! Even if we would drop all you suggested, the 1-on-1's will be kept, because so powerful:
- We used to do something,
afterwards finding out it wasn't what it should be
- Now we find out before, allowing us to do more right-the-first-time

Results

One year later

Product manager:

- Schedule accuracy for this platform development was 50\% better than the program average over the last 5 years
(as measured by program schedule overrun)
- This product was the fastest time-to-market with the highest quality at introduction of any platform in our group in more than 10 years
- The team also won a prestigious Team Award as part of the company's
Technical Excellence recognition program

Evolutionary Project Management (Evo)

Plan-Do-Check-Act on every level

- Zero Defects

Attitude

- Prevention costs less than repair

- Business Case

Why?

- Why are we going to improve what?
- Requirements Engineering
- What are we going to improve, and what not?
-- How much will we improve? - Quantification
U-bownumwerob Quancaion

- Architecture and Design

- Selecting the optimum compromisefforthe conflicting requirements
- Early Review andmsoection

How?

What?
How much?
Are we done?

- Measuring qudity while doing, learning to prevent doing thewurng things.
- Weekly Task Cycle
- Short-Term Planning
- Optimising Estir@tior
- Promisinginfur dar achieve
- Living up to o prunises
- andeekly Delivery Cycle

Effectiveness of what we do
Odimising the requirements

- Soliciting feedback by delivering
real results to eagerly waiting stakeholders
- Timeline What will happen and what will we do about it?
- Getting and keeping control of time: predicting the future
- Feeding program/portfolio/resource management

Quantified Requirements

How to quantify

Definition:
specific Measurable

Meter:

RQ27: Speed of Luggage Handling at Airport
Scale: Time between <arrival of airplane> and first luggage on belt <measure arrival of airplane>, <measure arrival of first luggage on belt>, calculate difference

Benchmarks (Playing Field):

Past: 2 min [minimum, 2018], 8 min [average, 2018], 83 min [max, 20184]
Current: < 4 min [competitor y, Jan 2018] \leftarrow <who said this?>, <Survey April 2018>
Record: 57 sec [competitor x, Jan 2018]
Wish: < 2 min [2022Q3, new system available] \leftarrow CEO, 19 Jan 2021, <document ...>
Requirements: Time
Tolerable: < 10 min $[99 \%$, Q4] \leftarrow SLA Traceable
Tolerable: $<15 \mathrm{~min}[700 \%$, Q4, Heathrow T4] \leftarrow SLA

```
Goal: < \(15 \mathrm{~min}[99 \%\), Q2], \(<10 \mathrm{~min}[99 \%, \mathrm{Q} 3],<5 \mathrm{~min}[99 \%, \mathrm{Q} 4] \leftarrow\) marketing
```


Nice Requirements

Parking system

- Handle up to 400 cars per hour 9 sec per car
- Approval to enter: $<3 \mathrm{sec}$
- Uptime 99,95\%
downtime: $4.4 \mathrm{hr} / \mathrm{yr}$
@400 cars per hour $\rightarrow 1750$ missed per year \rightarrow deemed acceptable
- Response time < 150msec
- Max screen build up time $<500 \mathrm{~ms}$
- Life span 15 years
- Can you put a system at our office entrance ?
- Took quite some weeks
- Response time: 2 sec
- Approval to enter: 7 sec
- Can the architecture handle improving these up to required levels?

Earth Observation Satellite

On Time

Earth Observation Satellite

- Very experienced Systems Engineers
- One problem: They missed all deadlines

Can you help us?

- Taught them 'Quality on Time' Evo Planning
- 9 weeks later: haven't missed a deadline since
- 2.5 years later: delivered 1 day early (instead of expected 1 year late)
- Savings: at least 40 man-years (about €6million?)

SE-TRFINING

Awful Schedule Pressure !

Quantifying the problem

Problem - Solution

- Meeting with sub-contractors in three weeks
- 2 weeks to review documents
- "Impossible deadline"
- How many documents to review?
- How much time per document?
- How much time available?
- Some suggestions...
- Result: well reviewed, great meeting, everyone satisfied

	Doc 1	Doc 2	Doc 3	Doc 4	Doc 5	Doc 6	Doc 7
John	x		x	x	x	x	
Samuel	x	x		x		x	x
Paul	x	x	x	x	x	x	x
Michael	x			x	x		
Marc			x	x		x	x

Per Doc	Hour	
4 Heavy	15	60
3 Easy	2	6
	Total	66
Other Work		33
	Total	99

Available	2×26	52

From now on, will you deliver Quality on Time

The Right Results at the Right Time

Niels Malotaux

Evolutionary Project	Management (Evo)
O pmomechechecton eney lesel	
- Eero oetects	
esc useos	
iremens Enjineoins	cetiv oriver octe
- Acritecture and osoign	
边	mex
mamessine	

5E-TRAINING

Classroom Course Highlights February 2023

Course Name	Date	Location
Requirements - The good, the bad, the ugly	$20-22$ February	Zürich
Practical MBSE \& SysML	$20-22$ February	Zürich
SE in a Nutshell (online)	24 February	Online

SE-TRRINING
www.se-training.net

Classroom Course Highlights Mach 2023

Course Name	Date	Location
Quality on Time	$06-07$ March	Zürich
Systems Architecting Intermediate Level	$13-15$ March	Zürich
SE Foundations	$29-31$ March	Munich
SE Management	$30-31$ March	Munich

EDU UA

SE-TRFINING
www.se-training.net

Classroom Course Highlights April 2023

Course Name	Date	Location
Technical Problem Solving	05 April	Zürich
INCOSE SEP Exam Preparation	$18-21$ April	Zürich
SE in a Nutshell (online)	28 April	Online

* Early Bird discount of 10\% on any of our 2-, 3-, 4- and 5-Day classroom courses if your register 6 weeks or more prior to course start date.

To view the full schedule of upcoming coursés, visit our website: www.se-training.net

Follow us on LinkedIn for regular updates on free webinars!

