Predictable Projects
 Using Evolutionary Project Management to get the Right Results at the Right Time

Niels Malotaux

N R Malotaux
Consultancy
+31-655 753604
niels@malotaux.nl
www.malotaux.nl

Niels Malotaux

- Project Coach

- Helping projects and organizations very quickly to become
- More effective - doing the right things better
- More efficient - doing the right things better in less time
- Predictable - delivering as predicted
- Getting projects back on track

Ultimate Goal of a What We Do

Quality
 on Time

Delivering the Right Result at the Right Time, wasting as little time as possible (= efficiently)

- Providing the customer with
- what he needs
- at the time he needs it
- to be satisfied
- to be more successful than he was without it
- Constrained by (win - win)
- what the customer can afford
- what we mutually beneficially and satisfactorily can deliver
- in a reasonable period of time

Requirements with Planguage

Definition:
RQ27: Speed of Luggage Handling at Airport
specific Scale: Time between <arrival of airplane> and first luggage on belt

```
Benchmarks (Playing Field):
Past: \(\quad 2 \mathrm{~min}[m i n i m u m, 2009], 8 \mathrm{~min}[\) average, 2009], \(83 \mathrm{~min}[m a x, 2009]\)
Current: < \(4 \min\) [competitor y, Jan 2010] \(\leftarrow\) <who said this?>, <Survey Feb2010>
Attainable Record: 57 sec [competitor \(x\), Jan 2010]
Wish: < \(2 \mathbf{m i n}[2011\) Q3] \(\leftarrow\) CEO, 19 Feb 2010, <document ...>
Requirements: Time
Realizable Must: \(\quad<10 \min [99 \%\), Q4] \(\leftarrow\) SLA
Must: \(\quad<15 \mathrm{~min}[100 \%\), Q4, Schiphol] \(\leftarrow\) SLA
Goal: < \(15 \min [99 \%\), Q2], < \(10 \min [99 \%\), Q3], < \(5 \min [99 \%\), Q4] \(\leftarrow\) marketing
```


For Whom, What and How

- Carry out an Evo delivery cycle
- Measure values delivered
- Measure costs incurred
- For whom \leftarrow stakeholders
- What to carry out \leftarrow requirements, prioritizing
- How to carry out
- Effectively producing desired results : having an intended effect
- Efficiently producing desired results without wasting (materials, time, energy)
- Continuous improvement (at no extra burden: it should save !)

First Do and then Think, or First Think and then Do ?

Insanity is doing the same things over and over again and hoping the outcome to be different (let alone better) Albert Einstein 1879-1955, Benjamin Franklin 1706-1790, it seems Franklin was first

- Only if we change our way of working, the result may be different
- Hindsight is easy, but reactive
- Foresight is less easy, but proactive
- Reflection is for hindsight and learning \rightarrow retrospective
- Preflection is for foresight and prevention \rightarrow prespective
- Only with prevention we can save precious time
- This is used in the Deming/Plan-Do-Check-Act cycle

The essential ingredient: the PDCA Cycle

Project evaluations - Post Mortem - Retrospectives

- Plan-Do-Check-Act
- The powerful ingredient for success
- Business Case
- Why we are going to improve what for whom
- Requirements Engineering
- What we are going to improve and what not
- How much we will improve: quantification
- Architecture and Design
- Selecting the optimum compromise for the conflicting requirements
- Early Review \& Inspection
- Measuring quality while doing, learning to prevent doing the wrong things
- Weekly TaskCycle
- Short term planning

Evo Project Planning

- Optimizing estimation
- Promising what we can achieve
- Living up to our promises Efficiency of what effectiveness of what we do
- Bi-weekly DeliveryCycle
- Optimizing the requitements and checking the assumptions
- Soliciting feedback by delivering Real Results to eagerly waiting Stakeholders
- TimeLine
- Getting and keeping control of Time: Predicting the future
- Feeding program/portfolio/resource management

Evo - Gilb BCS - April 2013

Evolutionary Project
 Management (Evo)

Weekly TaskCycle

- What are we going to do and why
- Are we doing the right things, in the right order, to the right level of detail for now
- Optimizing estimation, planning and tracking abilities to better predict the future
- Select highest priority tasks, never do any lower priority tasks, never do undefined tasks
- There are only about 26 plannable hours in a week (2/3)
- In the remaining time: do whatever else you have to do
- Tasks are always done, 100\% done

Every week we plan

- How much time do we have available
- 2/3 of available time is net plannable time
- What is most important to do
- Estimate effort needed to do these things

```
Taska
Taskb
Taskc 3
Taskd 6
Taskf 4
Taskg 5 26
Taskh 4
Taskj 3
Taskk 1 \downarrow not
```

- Which most important things fit in the net available time exactly (default 26 hr per week)
- What can, and are we going to do
- What are we not going to do
- Not producing waste!

$$
2 / 3 \text { is default start value }
$$ this value works well in development projects

Planning: Retrospection and Prespection

- Retrospection: Analysis of last week
- All work done ?
- If real and estimated time significantly different: analyze to learn
- Not all work done ?
- Why?
- 3 hr planned, 3 hr spent, task not done: complexity estimation issue
- 3 hr planned, 3 hr not spent, task not done: time management issue
- Prespection: Planning of next week
- How much time available
- Most important things to do
- How much fits in the available time ?
- How much time is needed; may we spend; will we spend (timebox)
- What will we have done by the end of the cycle ?
- What do we now already know that won't have been done ?

Weekly 3-Step Procedure

- Individual preparation
- Conclude current tasks
- What to do next
- Estimations
- How much time available
- Modulation with / coaching by Project Management
- Status
- Priority check
- Feasibility
- Commitment and decision
- Synchronization with group (team meeting)
- Formal confirmation
- Concurrency
- Learning
- Helping
- Socializing

Value stream example

- Total Business Cost 114 days, Cost of Non Value: 112 days
- Occurrence: 2 x per day, delay per occurrence: 10 min
- Number of business people affected: 100
- Business Cost of Non Value: 2×10 min x 112 days x 100 people x $400 € /$ day $=187 \mathrm{k} €$
- Net Cost of Value: 1.6 days $\rightarrow \sim 3$ people $x 1.6$ days $\times 1000 € /$ day $=5 \mathrm{k} €$

DeliveryCycle

- What are we going to deliver to whom and why
- Are we delivering the right things, in the right order,
to the right level of detail for now

Agile, but will we be on time?

- Organizing the work in very short cycles
- Making sure we are doing the right things
- Doing the right things right
- Continuously optimizing (also what not to do)
- So, we already work more efficiently but ...
- How do we make sure the whole project is done on time ?

TimeLine:

What do we do if we see we won't make it on time ?

- Value Still to Earn
versus
- Time Still Available

If the match is over, you cannot score a goal

Deceptive options

- Hoping for the best (fatalistic)
- Going for it (macho)
- Working Overtime (fooling ourselves)
- Moving the deadline
- Parkinson's Law
- Work expands to fill the time for its completion
- Student Syndrome
- Starting as late as possible, only when the pressure of the FatalDate is really felt

The Myth of the Man-Month

Brooks' Law (1975) Adding people to a late project makes it later

Saving time

Continuous

 elimination of wasteWe don't have enough time, but we can save time without negatively affecting the Result !

- Efficiency in what (why, for whom) we do - doing the right things
- Not doing what later proves to be superfluous
- Efficiency in how we do it - doing things differently
- The product
- Using proper and most efficient solution, instead of the solution we always used
- The project
- Doing the same in less time, instead of immediately doing it the way we always did
- Continuous improvement and prevention processes
- Constantly learning doing things better and overcoming bad tendencies
- Efficiency in when we do it - right time, in the right order
- TimeBoxing - much more efficient than FeatureBoxing

Do you have deadlines ?

Even more important: the starting deadlines
The last day of starting, not to need an excuse later

All this prespection takes too much time !

- It doesn't
- It should save time, otherwise: don't do it !
- It worked in many projects, statistically there is a good chance that it works for you

www.malotaux.nl/booklets

More

1 Evolutionary Project Management Methods (2001)
Issues to solve, and first experience with the Evo Planning approach
2 How Quality is Assured by Evolutionary Methods (2004) After a lot more experience: rather mature Evo Planning process
3 Optimizing the Contribution of Testing to Project Success (2005) How Testing fits in
3a Optimizing Quality Assurance for Better Results (2005) Same as Booklet 3, but for non-software projects
4 Controlling Project Risk by Design (2006)
How the Evo approach solves Risk by Design (by process)
5 TimeLine: How to Get and Keep Control over Longer Periods of Time (2007) Replaced by Booklet 7, except for the step-by-step TimeLine procedure
6 Human Behaviour in Projects (APCOSE 2008) Human Behavioural aspects of Projects
7 How to Achieve the Most Important Requirement (2008)
Planning of longer periods of time, what to do if you don't have enough time
8 Help ! We have a QA Problem ! (2009)
Use of TimeLine technique: How we solved a 6 month backlog in 9 weeks
RS Measurable Value with Agile (Ryan Shriver - 2009)
Use of Evo Requirements and Prioritizing principles
www.malotaux.nl/inspections
Inspection pages

Predictable Projects
 Using Evolutionary Project Management to get the Right Results at the Right Time

Niels Malotaux

$\frac{\text { N R Malotaux }}{\text { Consultancy }}$
+31-655 753604
niels@malotaux.nl
www.malotaux.nl

