
1 Malotaux - Embedded 2010

Niels Malotaux

•+31-30-228 88 68 niels@malotaux.nl www.malotaux.nl

Reliable Embedded Systems
Organizing our CanSat project towards success

(Organizing your other work at the same time)

2 Malotaux - Embedded 2010

Niels Malotaux

• Project Coach
• Evolutionary Project Management (Evo)

• Requirements Engineering

• Reviews and Inspections

• More than 30 years Embedded Systems Design
experience

• Expert in helping projects to be successful

my recent
design

3 Malotaux - Embedded 2010

Who are you ?

• Who are you ?

• What do you expect ?

4 Malotaux - Embedded 2010

Seminar Program 7 ~ 11 June 2010 - every morning 9:00 - 12:30

Monday: General introduction Reliable Embedded Systems
• What causes failure and what can we do about it

Tuesday: Requirements and Design
• What are we supposed to accomplish

• How to select the best way to do that

• How to document for better understanding

Wednesday: Planning
• How to make sure we’ll be ready on time

• You will learn how to accomplish much more in less time

Thursday: Testing, Reviews and Inspections
• Learning to find our mistakes early and never make them again

Friday Master Class: actually organizing our project
• Using what we learnt to set up our project for success

5 Malotaux - Embedded 2010

Do you want your project to fail ?

• If you want to make your CanSat project a success, you
should attend all sessions

• If you want your project to be a success, make sure you
attend all five days !

• Those who attended all sessions may ask Niels for
advice by email or Skype during the project

• E-mail: niels@malotaux.nl

• Skype name: nielsmx

mailto:niels@malotaux.nl

6 Malotaux - Embedded 2010

This seminar should be highly interactive

• You don’t learn much if only listening to a long presentation

• A lot of discussion will teach you more

• So prepare to be very interactive

• Think in advance about:

• Questions about Embedded Systems Design

• How much time you have available to do the project

• All what you think you have to do for the CanSat project

• Expected problems with CanSat

• What else you have to do apart from the project

• You may email me a list of these things
(then I can prepare better)

7 Malotaux - Embedded 2010

If you don’t have time

• If you don’t attend, you will use more time

• Attending the seminar will save you a lot of time

• Not only the CanSat project will be more successful:
your other work will also be more successful in shorter time

• Therefore, if you don’t have time, you should attend !!!

8 Malotaux - Embedded 2010

Embedded System ?

• Information processing subsystem of embedding system

• Performing specific functions

• Not visible or directly accessible by the users of the
embedding system

• Often switched on only once, and then running for years

9 Malotaux - Embedded 2010

10 Malotaux - Embedded 2010

11 Malotaux - Embedded 2010

How about the Embedding System ?

• Should we talk about Embedded Systems ?

• If we don’t consider the whole System we will provide
inadequate interfaces

12 Malotaux - Embedded 2010

Actual system

Actual Systems

Embedding system

Embedded system

sensors

actuators

communication

Embedded
system

sensors

actuators
communication

Embedded
system

sensors

actuators
communication

13 Malotaux - Embedded 2010

ATM (Automatic Teller Machine)

14 Malotaux - Embedded 2010

A lot of Embedded Systems

15 Malotaux - Embedded 2010

Washing machine

16 Malotaux - Embedded 2010

MP3 player

17 Malotaux - Embedded 2010

Nano-satellite

Delfi-C3 Delft University of Technology

18 Malotaux - Embedded 2010

19 Malotaux - Embedded 2010

Delfi
N3xt

20 Malotaux - Embedded 2010

Reliable Embedded Systems ?

• It should simply work

• How reliable ?

• Reliability is an element of Dependability

21 Malotaux - Embedded 2010

Dependability

• Some embedding systems can be switched off

• Many embedded systems we cannot switch off

• We have to trust the correct operation

22 Malotaux - Embedded 2010

AHOB (Automatic Half Barrier Crossing)

23 Malotaux - Embedded 2010

ADOB
(Automatic Double Barrier Crossing)

1 train every 4 minutes

Few years of trouble
before some stability

At >22oC still trouble

Why it didn’t work
is irrelevant

What we deliver
should simply work

Is that so difficult?

24 Malotaux - Embedded 2010

Dependability is a complex concept

• Availability
• Readiness for correct service

• Reliability
• Continuity of correct service

• Safety
• Not causing damage

• Integrity
• No improper system alterations

• Internal

• External Security

• Maintainability
• Ease of required alterations

25 Malotaux - Embedded 2010

Availability

• Dependability.Availability
• Readiness for correct service

• Scale: % of <TimePeriod> a <System> is <Available> for its <Tasks>

• Probability that the system will be functioning correctly
when it is needed

• Examples
• (preventive) maintenance may decrease the availability

• Telephone exchange (no dial tone) < 5 min per year (99.999%)

• Snow on the road

26 Malotaux - Embedded 2010

Availability

Availability %
Downtime

per year
Downtime
per month

Downtime
per week

Typical usage

90% 36.5 day 72 hr 16.8 hr

95% 18.25 day 36 hr 8.4 hr

98% 7.30 day 14.4 hr 3.36 hr

99% 3.65 day 7.20 hr 1.68 hr

99.5% 1.83 day 3.60 hr 50.4 min

99.8% 17.52 hr 86.23 min 20.16 min

99.9% (three nines) 8.76 hr 43.2 min 10.1 min Web server

99.95% 4.38 hr 21.56 min 5.04 min

99.99% (four nines) 52.6 min 4.32 min 1.01 min Web shop

99.999% (five nines) 5.26 min 25.9 sec 6.05 sec Phone network

99.9999% (six nines) 31.5 sec 2.59 sec 0.605 sec Future network

27 Malotaux - Embedded 2010

Reliability

• Reliability
• Continuity of correct service

• Keeps working as intended

• Scale: Mean time for a <System> to experience <Failure Type>
under <Conditions>

• MTBF – Mean Time Before Failure

• MTBR – Mean Time Between Repairs

• MTTR – Main Time To Repair

• Reliability does not automatically imply safety

28 Malotaux - Embedded 2010

Safety

Safety
• Not causing death, injury, illness, damage

to people, equipment, environment

• Probability that x people die per year

• Example: star-system for cars (adult / child, in-car / pedestrian)

• System staying in safe state despite failures

• Safety does not automatically imply reliability

• A safe system may stop functioning, as long as damage
is avoided
• Car ?

• Airplane ?

29 Malotaux - Embedded 2010

Failures

• Low frequency / low demand rate
• Anti-lock braking (ABS)

• Air bags

 PFD - Probability the Function fails on Demand

• Frequent or continuous use
• Normal braking

• Steering

 MTTF - Mean Time To Failure

 After-the-Event Protection

30 Malotaux - Embedded 2010

SIL - Safety Integrity Level

Infrequent use, low demand

SIL
Safety Integrity Level

PFD
Probability Fail on Demand

Availability

4 < 10-5 99.999%

3 < 10-4 99.99%

2 < 10-3 99.9%

1 < 10-2 99%

Frequent or continuous use

SIL
Safety Integrity Level

MTTF (years)
Mean Time To Failure

Failures per
hour

4 > 10,000 yr < 10-8

3 > 1,000 yr < 10-7

2 > 100 yr < 10-6

1 > 10 yr < 10-5

31 Malotaux - Embedded 2010

Fault tolerance

• Fault tolerance
• Ability (how much) to function reliably also if faults occur

• Full Fault tolerance
• Absolute Functioning reliably also if faults occur

• Delivering all services whether errors occur or not

• Primary mechanism is replication of software, hardware,
information, and preventive maintenance

• Graceful degradation
• Continuing delivering services even when errors occur,

discarding less important services

• Fail-safe system
• Aborting operation in a safe state

32 Malotaux - Embedded 2010

Redundancy

33 Malotaux - Embedded 2010

Security

Dependability.Security
Free from intrusions (theft, alteration)

Scale: Time required to <break into the system>

Can our competition jam our CanSat communication ?

34 Malotaux - Embedded 2010

Availability risks of development ?

• Delivering the right thing

• At the right time

35 Malotaux - Embedded 2010

Reliability Engineering ref Albertijn Barnard

• Reliability
• No failures in products and systems

• Reliability Engineering
• Preventing the creation of failure

• Engineering analysis

• Failure analysis

• Stress test

36 Malotaux - Embedded 2010

Reliability engineering actions ref Albertijn Barnard

• Concurrent engineering

• Integrated project teams

• Design reviews

• Mechanical and electrical stress predictions

• Component derating analysis

• Electrolytic capacitor life calculations

• FMEA and FTA

• System modeling

• Highly-Accelerated Life Testing (HALT) and Highly-
Accelerated Stress Screening (HASS)

• Field return root cause analysis

37 Malotaux - Embedded 2010

Failure Mode and Effect Analysis

• System - focuses on global system functions

• Design - focuses on components and subsystems

• Process - focuses on manufacturing and assembly process

• Service - focuses on service functions

• Software - focuses on software functions

38 Malotaux - Embedded 2010

CanSat 2009 project

39 Malotaux - Embedded 2010

40 Malotaux - Embedded 2010

The result of this year’s ARLISS flights

• We launched airplane style CanSat

• First flight’s record is 4187 m and second is 301 m

• In third flight, we got a moving picture in the sky

• We couldn’t get control record from radio transmitter

Future plans

• We must develop a new radio transmission system so
as to get the downlink data from CanSat more certainly

41 Malotaux - Embedded 2010

What was the main result ?

1st flight 2nd flight 3rd flight

Fly back with control !! with control !!?? free fall

Camera fail fail success

Soft Landing fail fail fail

42 Malotaux - Embedded 2010

Why so much failure ?

• Not only the Keio team

• Trial and error ?

• Hope ?

• ??

43 Malotaux - Embedded 2010

CanSat 2010: Failure is not an option !

• How to make sure it will simply work

• Calculate how to achieve our goals by design (not hope)

• Learning lessons from previous attempts

• Do root cause analysis on previous attempts

• What went wrong, why and how will we prevent failure ?

• Did the system keep a log of activities (for analysis) ?

• Did we do sufficient fundamental experiments ?

• Did the designers keep a Design Log ?

• Did the designers systematically plan their project ?

44 Malotaux - Embedded 2010

DesignLog

• In computer, not loose notes, not in e-mails, not handwritten
• Text
• Drawings!
• On subject order
• Initially free-format
• For all to see

• All concepts contemplated
• Requirement
• Assumptions
• Questions
• Available techniques
• Calculations
• Choices + reasoning:

• If rejected: why?
• If chosen: why?

• Rejected choices

• Final (current) choices

• Implementation

•Chapter
•Requirement What to achieve
•.
•Assumptions
•Questions + Answers
•.
•.
•.
•.
•Design options
•Decision criteria
Decision implementation spec

•New date: change of idea:
•Design options
•Decision criteria
Decision implementation spec

45 Malotaux - Embedded 2010

Risk

An uncertain event or condition that,

if it occurs,

has a negative effect

on a project’s objectives
(PMBOK)

 0% probability is not a risk

 100% probability is an issue or a problem

46 Malotaux - Embedded 2010

Confidence

of Estimate

Confidence

of Estimate

Confidence

of Estimate

Risk
Model

Prevention

Plans

Contingency

Plans

•worst
case ?

ImpactEvent Cost

Probability

of Event

Probability

of Impact

Impact

Driver(s)

Event

Driver(s)

Risk Value

x x

=

CPPV ieR

47 Malotaux - Embedded 2010

Checklists for brainstorm

• Human risk
• In the project
• After the project

• Technical risk
• Can we make it
• Will it survive

• Environmental risk
• Example: CE

• Regulatory risk
• Example: CE

• Consequential risk

• …

Each of these can have
it’s own checklist
to trigger the recognition
of real risks

48 Malotaux - Embedded 2010

What are Risks in our Project ?

...

...

...

Are these really Risks?

0% probability is not a Risk

100% probability is not a Risk

49 Malotaux - Embedded 2010

Many known risks are hardly risks

Most of the real risks are in the product

Most of the known risks are in the project

We don’t only design the product,

We also design the project

If we control 80% of the risks by design

We have more time to handle the 20% real risks

VRisk = Pevent Pimpact C Pevent = 1

Pimpact 0

50 Malotaux - Embedded 2010

Risk mitigation

avoid

Pi = 0

reduce

pass-on
subcontract ??

insure

accept
self-insure

control

Pi

VRisk = Pevent Pimpact Cost

51 Malotaux - Embedded 2010

Murphy’s Law

• Whatever can go wrong, will go wrong

• Should we accept fate ??

Murphy’s Law for Professionals:

 Whatever can go wrong, will go wrong …

Therefore:

 We should actively check all possibilities that can go wrong
and make sure that they cannot happen

52 Malotaux - Embedded 2010

Exercise

• Which risks can we expect in our CanSat project ?

• What are we going to do about it ?

• Save in DesignLog

53 Malotaux - Embedded 2010

Issues for reliability ?

• Radiation

• Temperature, temperature cycles, temperature in vacuum

• Vibration

• Pressure: vacuum, up to 1 atm

• Mass - Weight - Size

• No single point of failure

• Worst case

• Power supply, power consumption

• Components

54 Malotaux - Embedded 2010

Worst reliability risks ?

• Mechanics ?
• Design errors or weaknesses

• Wear

• Unexpected behavior

• Electronics ?
• Design errors or weaknesses

• Unexpected behavior

• Software ?
• Design errors or weaknesses

• Unexpected behavior

55 Malotaux - Embedded 2010

Embedded software

• Embedded
• Invisible computing power for specific purpose

• Concurrent
• Several (interacting) processes run at the same time

• Reactive
• Reacts on external signals

• Real-time
• Reactions are appropriately immediate

• Complex
• More complicated than we can oversee

56 Malotaux - Embedded 2010

Complexity

• How difficult to understand and verify the design or
implementation

• Complexity can be reduced by
• Methods/thoughts/tools/tables/diagrams/abstractions if they

increase our understanding and/or ability to verify

• First developing the problem
(understanding the problem is half the solution)

• Starting small and simple

• Keeping it small and simple

57 Malotaux - Embedded 2010

Growing size of Embedded Software

• Size of software in a TV-set grows exponentially

• I’m hardly impressed

• Using libraries of unknown quality

58 Malotaux - Embedded 2010

Start small, keep it small

• ‘Trying’ large program doesn’t work

• Do small steps
• Skeleton

• Thin tread

• Small tree

• Keep it as small and simple as possible

59 Malotaux - Embedded 2010

Looking at the whole

• Designers often focus on their sub-system

• Risk of sub-optimizing in stead of optimizing the whole
system

60 Malotaux - Embedded 2010

Systems Engineering

• Other Engineers (?)
• Silo thinking

• Sub-optimizing

• Gold plating (hobbies)

• Little attention to interfaces

• Projects are always multidisciplinary

• Systems Engineers
• Multi-dimensional thinking

• Optimizing design decisions over all dimensions

• Whole life-cycle (cradle to cradle)

• Balancing requirements

• Including delivery time

• All disciplines interdisciplinary

61 Malotaux - Embedded 2010

Multidisciplinary Interdisciplinary

• Tension between
• Technologically possible
• Economically profitable
• Socially and psychologically acceptable
• All kinds of disciplines needed for a good solution

• Multidisciplinary
• Many disciplines work in the project
• Optimize solution in their own domain

• Interdisciplinary
• Many disciplines work together in the project
• Overall-optimizing
• First developing the problem, before developing the solution,

before implementing the solution

62 Malotaux - Embedded 2010

Types of Systems Engineering ref Joe Kasser

Type V
• Can define the problem and then determine what needs to be

done to implement an optimal solution

Type IV
• Can define the problem

Type III
• Can be given the problem and then determine what needs to be

done to implement an optimal solution

Type II
• Can be told what needs to be done to implement a solution and

can work out how to do it

Type I (apprentices)

• Can be told how to implement a solution and can then do it

63 Malotaux - Embedded 2010

We need sufficient understanding

• Electronics

• Software

• Mechanics

• Aerodynamics

• Interfacing

• Acknowledge that there is a lot we don’t know (yet)

• How to find out what we don’t know

• Where to find and how to learn what we should know

• We must learn to be Type V Systems Engineers

64 Malotaux - Embedded 2010

Reducing complexity

• Systematically understanding all parts of the system
• Relationship drawings

• Schematic drawings

• Geometric drawings

• DesignLog

• Software architecture

• Flow diagrams

• State diagrams

• Brainstorm

• Discussion

• Review

65 Malotaux - Embedded 2010

Understanding the relationships

system

sub-sub-
system

sub-
system

sub-sub-
system

sub-sub-
system

sub-sub-
system

sub-
system

sub-sub-
system

sub-sub-
system

sub-sub-
system

sub-
system

sub-sub-
system

sub-sub-
system

sub-sub-
system

sub-
system

sub-sub-
system

sub-sub-
system

66 Malotaux - Embedded 2010

Drawings and diagrams

• Diagrams must be ‘immediately’ clear

• If not, they are a risk

67 Malotaux - Embedded 2010

Is this clear ?

68 Malotaux - Embedded 2010

source docs
rules

standards

entry
criteria

individual
checklist

spelling/
syntax
check

inspection
checklists

gate
criteria

rejected
work
product

rejected
project

process
improvement

proposals
(rules/

standards/
checklists/

criteria)

Entry Kick-off Checking Logging
Brain-

storming
Edit

Follow
up

Exit

checked
work

product

inspected
work

product

PIPs from
other phases

Inspection process

Development project sub-process

Entry Activity GateInspectCheck
work

product

checked
work

product

inspected
work

product

accepted
work

product

start
ok

defects from
other phases

estimates

time
defects

time
size

time
defects

time
defects

causes/
improvement

ideas

timetime time time

© 2000 N R Malotaux - Consultancy file: http://www.malotaux.nl/nrm/pdf/subprocess.pdf

69 Malotaux - Embedded 2010

Flowgrams

Installed in car

No +12V power

to Micro?

Micro starts

running

Command from

Jornada?

(running on

battery)

No Key-off to

Key-on

transition?

Sends wake-up

message to

Jornada

USBY command?
Switch

Power1 on

Key off?

Jornada

Timeout?

SBY message?

Switch

Power1 off

Execute other

message

No Jornada

message?

Sby upon

Key Off?

Question If True

If False Notation

principle

Key

Timeout?

Values set by

USBY command

Sby upon

Jornada

Timeout?

Set Power2 timer

to 5 min

Power2Flag off

Power2 timer

not done?

Power2Flag

off?

Set Power2 timer

to 55 min

Power2Flag on

Set Power2 timer

to 5 min

Power2Flag off

Power1 on?

Key on?

Power2 onPower2 off

Power2Flag

on?

70 Malotaux - Embedded 2010

State Machines

PCWait
Init

Reset

Init

Active2

Init Dead

PC

Reset

PC

Power

InitialDelay done
Init

Power

State diagram PC watchdog process

Rese
t p

ulse
 done

Powerp
ulse

 done

Not PCReceived and

RestartDelay done

and Restarts done

PC Dead

PC

Active

Not PCReceived andRestartDelay done andRestarts not done

24
hr

D
el

ay
 d

on
e

PCReceived

P
C

R
ec

ei
v
ed

Reset pulsePower pulse

Set RestartDelay

Set InitialDelaySet Resets

Init

Restart1

Set Powers

Init

Active1

Set 24hrDelay

Set 24hrDelay

Set PowerPulse Set ResetPulse

Init

Active0

Init

Active3

24hrDelay
 done

Set Restarts

Set Powers

Set Restarts

PCReceived

P
o
w

er
s

d
o
n
e

Init

StandAlone or

NoPCWatch

Rese
ts

not d
one

Resets done

Powers
 not d

one

PCInit2PCInit1 PCInit3 PCInit4

Set Restarts

Init

Restart2

Set Resets

71 Malotaux - Embedded 2010

Where are the risks ?

• Everywhere !

• Hardware
• Timing

• Voltages

• Currents

• Worst case

• Software
• Architecture

• Design

• Operating System

• Asynchronous events

72 Malotaux - Embedded 2010

Sunny Scenario ?

• 20% of the software is there to make the computer
do what it should do

• 80% of the software is there to make the computer
not do what it should not do

• Did we define the 80% part properly ?

73 Malotaux - Embedded 2010

Never more than one place

• Code should be at one place and one place only

• Data should be at one place and one place only

• Object Oriented design

• No copy - paste

• Year 2000 problem would have been avoided

74 Malotaux - Embedded 2010

Basic Structure of Embedded System

Processor Inputs Outputs

Memory

Program

75 Malotaux - Embedded 2010

Types of memory

• ROM

• PROM

• EPROM

• FLASH

• EEPROM

• FRAM

• RAM
• Static

• Dynamic

• Serial

• With battery

76 Malotaux - Embedded 2010

Compilers

• Do you know what your compiler does to your
software?

• Versions of the compilers

• Optimizers

• Atomic expressions

• Interrupt latency if compiler makes atomic sets

77 Malotaux - Embedded 2010

RTOS - Real Time Operating System

• Organizes concurrent processes

• Event-driven switches tasks only when an event of
higher priority needs service

• Time-sharing switches tasks on a regular clock
interrupt, and on events

78 Malotaux - Embedded 2010

Response times

• Slow
• No specified deadlines
• Most PC software
• Wasting our time

• Interactive
• Adequate deadlines
• Productive business software
• Good CAD systems

• Soft real time
• Almost always on time
• Audio/Video encoding/decoding

• Hard real time
• Always on time
• Embedded control loops

79 Malotaux - Embedded 2010

Issues with processes in Embedded Software

• Concurrency
• Many concurrent (possibly interacting) processes

• Deadlock
• Two processes waiting for each other
• E.g. higher priority process waiting for lower priority process

• Causes a (sub)system to stop functioning

• Livelock
• Two processes infinitely communicating with each other

preventing other subsystems access

• Race condition
• If the outcome of two signals depends on the order of these

signals arriving

• Determinism
• Predictability of cause and effect
• We must know why it works

80 Malotaux - Embedded 2010

Memory allocation

• Static memory allocation
• You know where your memory is

• Automatic memory allocation
• Stack (LIFO: Last-in – First-out)

• Dynamic memory allocation
• You ask for memory and get it, if it’s available

• If it’s not available, you’re stuck

• Creates holes in memory: memory eventually gets exhausted !

81 Malotaux - Embedded 2010

Memory leak

• Memory is claimed at start and not returned at exit

• Example: hand-held device for shopping
• Device didn’t really need dynamically allocatable memory

• Reliability: MTBF ~ 20 sec

• Availability: zero

• Boot-delay: too long

• After solving all memory leaks: Device simply worked

82 Malotaux - Embedded 2010

Garbage collection

• If the program doesn’t clean up it’s own garbage …

• Clean-up of unused memory

• Used by Java, C# and many other languages

• Not used by C, C++ (that’s why most embedded systems use C or C++)

• Reallocation to remove gaps

• Non-deterministic
• Various approaches

• How long does it take ?

• When is it done ?

• Is it reliable ?

• If reliability means knowing why it is reliable …

83 Malotaux - Embedded 2010

Time-Slice Hard Real Time OS

2.5ms
slice

Actions

0 Reserved

1 Reserved

2 Reserved

3 Handle outputs

4 Read inputs and filter temperature

5 Prepare I2C to monitor (see steps 15~18)

6 Standby process

7 Degauss process

8 LED’s

9 Start-up counters and blank process

10 PC watchdog process

11 Hour counters process

12 Protocol command handler 1

13 Protocol command handler 2

14 Protocol command handler 3

15 I2C message to monitor 1 or 5

16 I2C message to monitor 2 or 6

17 I2C message to monitor 3 or 7

18 I2C message to monitor 4 or 8

19 Keep writing to EEPROM (BusyEE)

84 Malotaux - Embedded 2010

20 TimeSlice of 2.5 msec = 50 msec

2.5ms
slice

Actions
Software

file
Analog

measurement
EEPROM access

0 Reserved timerhnd.asm Temperature Writing to EEPROM (if started at step 19)

1 Reserved timerhnd.asm Power down Still writing to EEPROM (if 10msec write)

2 Reserved timerhnd.asm Power down Still writing to EEPROM (if 10msec write)

3 Handle outputs outputs.asm Power down Finishing writing to EEPROM

4 Read inputs and filter temperature tempfil.asm Power down Read from EEPROM possible

5 Prepare I2C to monitor (see steps 15~18) monitor.asm Power down Read from EEPROM possible

6 Standby process standby.asm Power down Read from EEPROM possible

7 Degauss process degauss.asm Power down Read from EEPROM possible

8 LED’s leds.asm Power down Read from EEPROM possible

9 Start-up counters and blank process sutimrs.asm Power down Read from EEPROM possible

10 PC watchdog process pcw.asm Power down Read from EEPROM possible

11 Hour counters process hours.asm Power down Read from EEPROM possible

12 Protocol command handler 1 process.asm Power down May read from EEPROM for command

13 Protocol command handler 2 process.asm Power down May read from EEPROM for command

14 Protocol command handler 3 process.asm Power down May write to EEPROM for command

15 I2C message to monitor 1 or 5 monitor.asm Power down Writing to EEPROM (if started at step 14)

16 I2C message to monitor 2 or 6 monitor.asm Power down Still writing to EEPROM (if 10msec write)

17 I2C message to monitor 3 or 7 monitor.asm Power down Still writing to EEPROM (if 10msec write)

18 I2C message to monitor 4 or 8 monitor.asm Power down Finishing writing to EEPROM

19 Keep writing to EEPROM (BusyEE) process.asm Power down May write to EEPROM if not yet done

85 Malotaux - Embedded 2010

Timing

86 Malotaux - Embedded 2010

Interrupts

• Interrupt latency – time from interrupt to start of ISR

• Takes time to finish the current instruction
• From one to many clock-cycles (eg multiply!)

• Takes time to save the current context

• Takes time if interrupts are disabled
• By software to protect non-atomic instructions

• By other running interrupt

• Interrupts introduce non-determinism (unpredictability)

• So we must use them very carefully

87 Malotaux - Embedded 2010

SH7125 Exceptions

88 Malotaux - Embedded 2010

Why do we need a watchdog ?

• Design errors (?)

• Software errors (?)

• Hardware errors (interference, wear)
• Radiation from space

• Radiation from adjacent sources

• CE - EMC directive

• Power-sequences

• Count the number of watchdog restarts for analysis
• Should stay at zero

89 Malotaux - Embedded 2010

Watchdog

• Resets the system unless …

• Regularly kicking the dog before it barks

• If the system doesn’t behave as it should

• Making sure the watchdog is and keeps enabled
• Can only set at first few instructions

• Can only reset with specific instruction

• Only hardware isn’t enough

• Brown-out
• What happens if NMI at non-atomic code ?

μC
super-
visor

Reset

NMI

Quiet

V+

90 Malotaux - Embedded 2010

Software watchdog issues

• What if the program runs outside program space ?

• Within memory
• empty ROM doesn’t exist

• random RAM

• memory mapped I/O can unsafe things happen ?

• Outside memory

• Did the software run in the expected order ?
• Check that we run the program in the expected order

91 Malotaux - Embedded 2010

Debugging

• Don’t !

• First find a theory how the phenomenon could happen

• Check the theory

• Example EEPROM losing data

93
C

06
 CS

CLK

DI

DO

92 Malotaux - Embedded 2010

Example: EEPROM parameter accidentally erased !

• Production since several years

• Factory calibration parameter disappears from EEPROM

• Only read once upon start of program

• How can this happen ?

• READ : 110000000

• ERASE: 111000000

Reset Start READ 1
Reset again Start READ 110000000
Result ERASE 1110000000

93 Malotaux - Embedded 2010

94 Malotaux - Embedded 2010

95 Malotaux - Embedded 2010

Measuring or testing

• If one product tests OK, the next product may be not OK

• It doesn’t prove that all repeat products will work the
same

• This has to be proven by design

96 Malotaux - Embedded 2010

Interfaces

• Digital input / output

• Analog input / output

• Timer/counter (measuring frequency)

• Capture (measuring time)

97 Malotaux - Embedded 2010

All components are imprecise

• Voltage levels

• Current levels

• Timing

• What is worst case ?
• Over temperature

• Over life time

• Over voltage range

98 Malotaux - Embedded 2010

Reading X and Y coordinates

• More general: reading two or more values (not) at the
same time

99 Malotaux - Embedded 2010

Non atomic

• Overflow Hardware counter 0xff 0x00 IRQ

• IRQ Increment Software counter-hi

• If reading the counter value:
• Read HWC: 0xff

• (unaware of IRQ) read SWC-hi: 0x01 (incremented by IRQ)

• We read: 0x01ff in stead of 0x00ff

• How can we solve this ?

• Such issues should be solved at only one place

100 Malotaux - Embedded 2010

Serial data stream

01100011011000111011011001101001010101101010100101011011010101001101010

101 Malotaux - Embedded 2010

Asynchronous communication

102 Malotaux - Embedded 2010

Asynchronous Clock Synchronization

103 Malotaux - Embedded 2010

Synchronous communication

104 Malotaux - Embedded 2010

A/D conversion

105 Malotaux - Embedded 2010

Worst
case
values

106 Malotaux - Embedded 2010

Timing
CP

In D

CP

Out Q

107 Malotaux - Embedded 2010

Metastability

• Digital samples

• If data changes exactly when the sample is taken

• Set-up and Hold times

• Metastability

• Multi-bit issues

108 Malotaux - Embedded 2010

Digital debounce

CP

In D

CP

Out

CP

Q2

D

Q1

Q

Q1

Q2

In

Out

CP

Q

109 Malotaux - Embedded 2010

Flash programming

110 Malotaux - Embedded 2010

111 Malotaux - Embedded 2010

Timer/Counter

Timer Pulses Overflow

Preset
value

112 Malotaux - Embedded 2010

Pulse capture

113 Malotaux - Embedded 2010

Schmitt-trigger

VthH

VthL

0

VDD

114 Malotaux - Embedded 2010

Delay or filter

GND

C

R

0,0

0,2

0,4

0,6

0,8

1,0

0/RC 1/RC 2/RC 3/RC 4/RC 5/RC
0,0

0,2

0,4

0,6

0,8

1,0

0/RC 1/RC 2/RC 3/RC 4/RC 5/RC

115 Malotaux - Embedded 2010

Debounce

+

C

R

GND

R/10

0,0

0,2

0,4

0,6

0,8

1,0

0/RC 1/RC 2/RC 3/RC 4/RC 5/RC

116 Malotaux - Embedded 2010

Handshaking

• I have something to send

• OK, you may send it

• Sending data

• I received the data OK

• End of conversation

117 Malotaux - Embedded 2010

Time Triggered Architecture

118 Malotaux - Embedded 2010

Reliable ?

• Don’t believe anything I say

• You may do anything

• As long as you know that it works, and why it works

• Assuming that your (or worse: their) design works, is
dangerous

• Assume you (and them) probably made mistakes

• Don’t trust yourself, use Reviews and Inspections

• Assume that you don’t know everything

• Know how to find it out

119 Malotaux - Embedded 2010

Digital signal processing principle

120 Malotaux - Embedded 2010

Digital Signal Processor - IIR or FIR filter

121 Malotaux - Embedded 2010

Possible exercise

• Nano-satellite

• Powered only by solar panels (no battery)

• Two processors having to work together

122 Malotaux - Embedded 2010

Seminar Program 7 ~ 11 June 2010 - every morning 9:00 - 12:30

Monday: General introduction Reliable Embedded Systems
• What causes failure and what can we do about it

Tuesday: Requirements and Design
• What are we supposed to accomplish

• How to select the best way to do that

• How to document for better understanding

Wednesday: Planning
• How to make sure we’ll be ready on time

• You will learn how to accomplish much more in less time

Thursday: Testing, Reviews and Inspections
• Learning to find our mistakes early and never make them again

Friday Master Class: actually organizing our project
• Using what we learnt to set up our project for success

