How to deliver Quality on Time

Delivering the Right Result at the Right Time

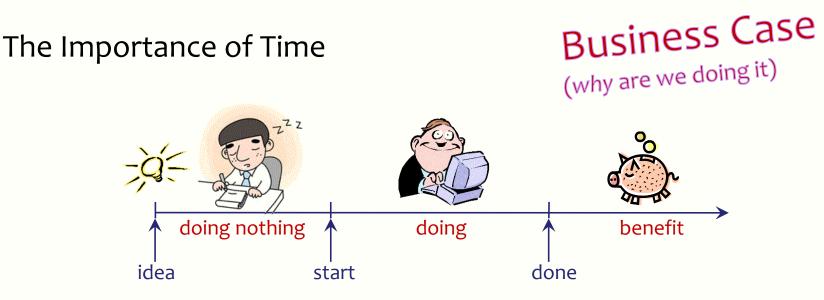
www.malotaux.eu/?id=conferences www.malotaux.eu/?id=booklets

Niels Malotaux

+31-655 753 604

niels@malotaux.eu

www.malotaux.eu


Niels Malotaux

- Independent Engineering and Team Coach
- Expert in helping teams and organizations to quickly become
 - More effective
 - More efficient
- doing the right things better
- ent doing the right things better in less time
- More predictable
- delivering as needed

- Project rescue
- Embedded Systems architect (electronics/firmware)
- Project types electronic products, firmware, software, space, road, rail, telecom, industrial control, parking system

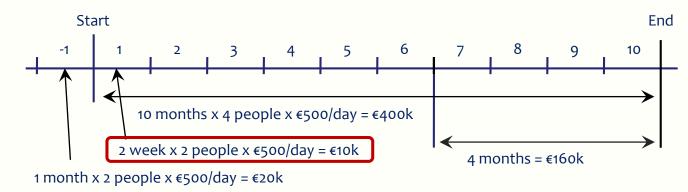
me Quality On Time Delivering the Right Result at the Right Time

Return on Investment (ROI)

- + Benefit of doing huge (otherwise we should do something else)
- Cost of doing usually minor compared with other costs
- Cost of being late lost benefit
- Cost of doing nothing yet every day we start later, we finish later

Do you know the cost of one day of (unnecessary) delay ?

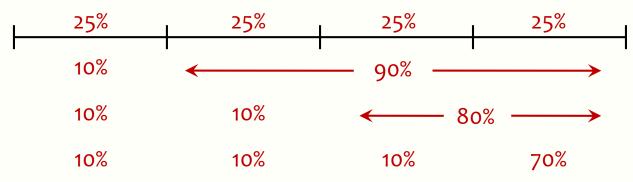
- What is the cost of your team per day ?
- What do you cost per day ? Note: that's not what you get !
- If you don't know the benefit, assume 10 times the cost
- How can you make decisions, if you don't know ?
- Say €400 per day
- 5 people x €400 = €2000
- Cost of delay 10 x €2000 = €20,000


if 5x:

• Cost of delay 5 x €2000 = €10,000

Exercise in the Chat
just use nr) and cost,
like: 1) UKL 20,000
or: 3) ?? 5)??
1) cost of one day delay?
2) cost of one day of team
3) cost of one day of you
4) assumed multiplier
5) cost of one day delay !

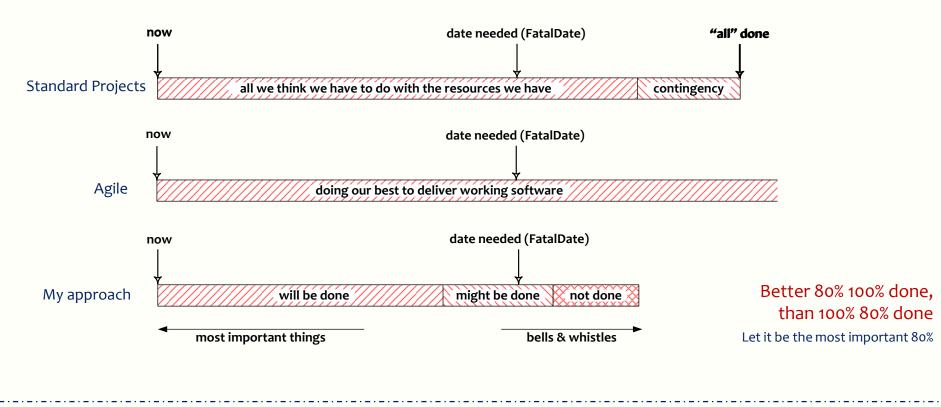
Time vs Budget ? - VOIP introduction project



- We can save 4 months by investing €200k
 → "That's too much !"
- It's a nicer solution Let's do 2 weeks more research on the benefits PO \rightarrow "Don't waste another 10k. Start working !"
- What are the expected revenues when all is done? $\rightarrow \epsilon 16 M/yr (\epsilon_{1.3M/mnd})$
- So 2 weeks extra doesn't cost €10k. It costs €16M/26 = €620k
- And saving 4 months brings €16M/3 = €5M extra

→ Invest that €200k NOW and don't waste time !

4 week project

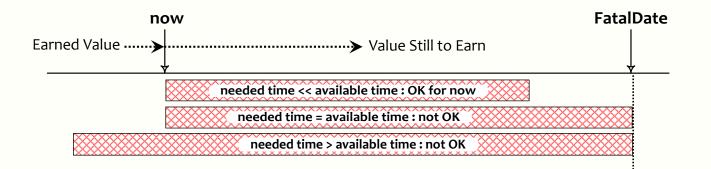


How long do such projects usually take?

Malotaux - BCS June 2023

TimeLine

How do we know that we do, and get, what is needed, when it's needed ?


Ultimate Goal of a What We Do (for our salary)

• Delivering the Right Result at the Right Time, wasting as little time as possible (= efficiently)

- Providing the customer with
 - what they need
 - at the time they need it
 - to be satisfied
 - to be more successful than they were without it
- Constrained by (win win)
 - what the customer can afford
 - what we mutually beneficially and satisfactorily can deliver
 - in a reasonable period of time

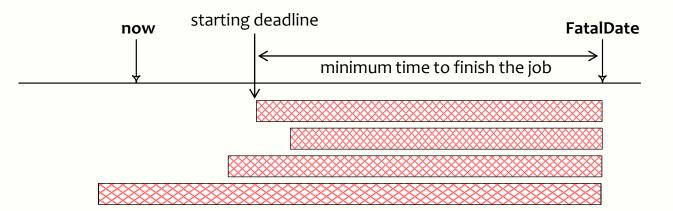
At the time they need it

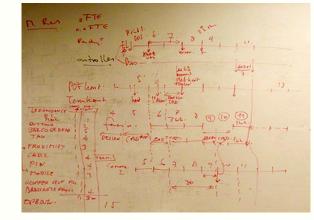
• Value Still to Earn

versus

• Time Still Available

If the match is over, you cannot score a goal




Even more important: Starting Deadlines

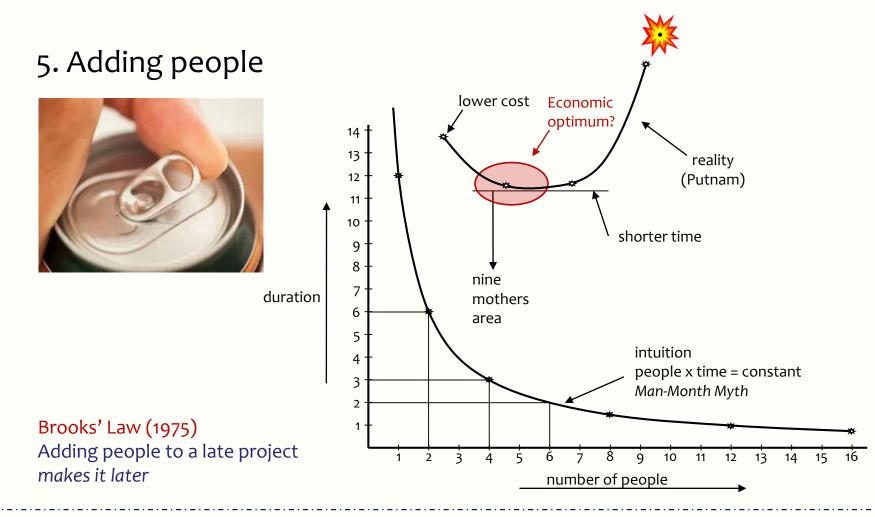
To meet Delivery Deadlines, focus on Starting Deadlines

Starting Deadline

- Last day we can start to deliver by the delivery deadline
- Every day we start later, we will end later

How to be on time

- Are your deliveries usually on time ?
- If yes, is the quality compromised for being on time?
 - That's not 'on time'!
 - What we deliver should simply work

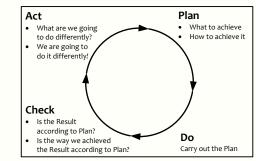

- How can we save time, without compromising quality ?
- 7 options

Exercise in the Chat

Are your deliveries usually on time ?
 Quality compromised to be on time ?

Deceptive options

- 1. Hoping for the best (fatalistic)
- 2. Going for it (macho)
- 3. Working Overtime (fooling ourselves and our boss)
- 4. Moving the deadline
 - Parkinson's Law
 - Work expands to fill the time for its completion
 - Student Syndrome
 - Starting as late as possible, only when the pressure of the FatalDate is really felt



Malotaux - BCS June 2023

www.malotaux.eu/?id=options

We don't have enough time, but we can save time without negatively affecting the Result !

- Efficiency in what (why, for whom) we do doing the right things
 - Not doing what later proves to be superfluous
- Efficiency in how we do it doing things differently
 - The product
 - Using proper and most efficient solution, instead of the solution we always used
 - The project
 - Spending less time, instead of immediately doing it the way we always did
 - Continuous improvement and prevention processes
 - Constantly learning doing things better and overcoming bad tendencies
- Efficiency in when we do it right time, right order
- TimeBoxing much more efficient than FeatureBoxing

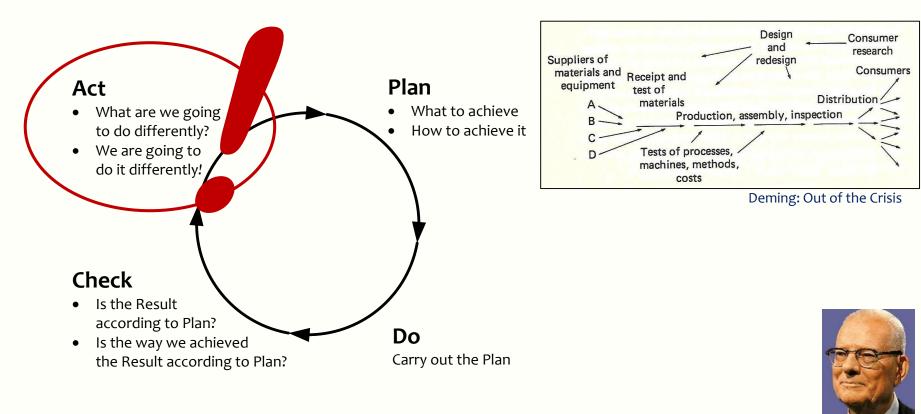
Malotaux - BCS June 2023

www.malotaux.eu/?id=options

(www.malotaux.eu/?id=evo)

(www.malotaux.eu/?id=designlog)

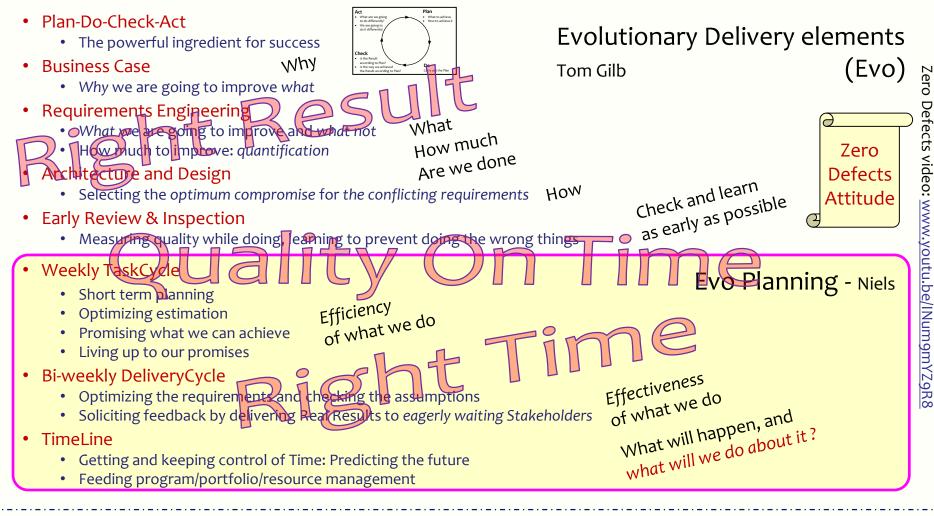
(www.malotaux.eu/?id=projectmanagement)

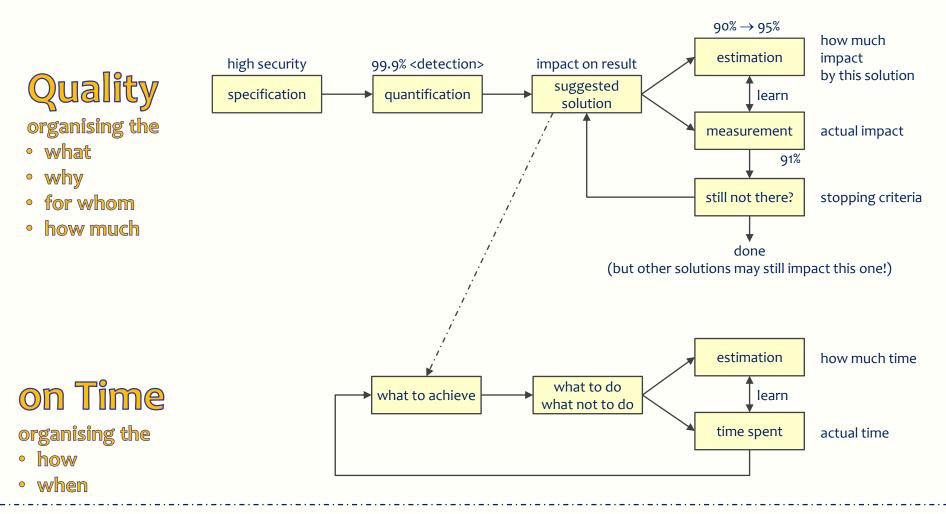

(www.malotaux.eu/?id=PDCA)

(www.malotaux.eu/?id=timeline)

(www.malotaux.eu/?id=timeboxing)

The secret weapon: PDCA


(Shewhart Cycle - Deming Cycle - Plan-Do-Study-Act Cycle - Kaizen)



Quality costs less

- Half of what we tend to do in our work, later will prove not to have been needed
 - If we see that after spending the time, the time is already wasted
 - If we see that before we spend the time, we still can decide not to waste the time
- If we save time, we have more time to do the right things right
- Doing things wrong, costs about three times as much as doing it right the first time
- Quality costs less
- We know we're not perfect, that's why we use PDCA

Tom Gilb quote

- The fact that we can set numeric objectives, and track them, is powerful, but in fact it is not the main point
- The main purpose of quantification is to force us to think deeply, and debate exactly, what we mean
- So that others, later, cannot fail to understand us

Requirements with Planguage

ref Tom Gilb

quantifying the goal

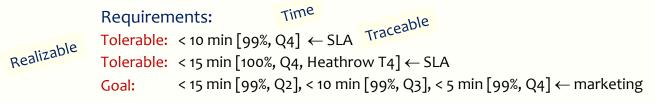
SMART

Specific

Measurable

Attainable

Definition:

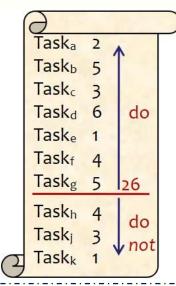

RQ27:	Speed of Luggage Handling at Airport
-------	--------------------------------------

Scale: Time between <arrival of airplane> and first luggage on belt

Meter: <measure arrival of airplane>, <measure arrival of first luggage on belt>, calculate difference

Benchmarks (Playing Field):

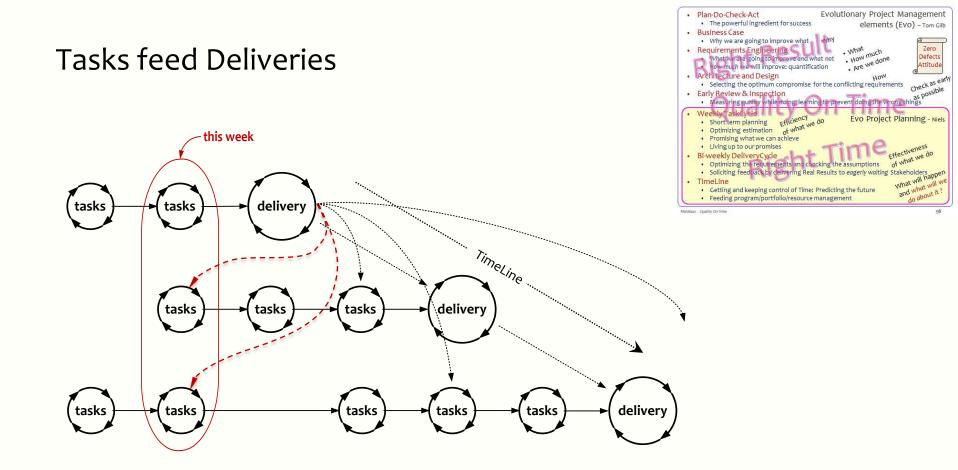
Past:	2 min [minimum, 2018], 8 min [average, 2018], 83 min [max, 2018]
Current:	< 4 min [competitor y, Jan 2018] \leftarrow <who said="" this?="">, <survey 2018="" april=""></survey></who>
Record:	57 sec [competitor x, Jan 2018]
Wish:	< 2 min [2022Q3, new system available] \leftarrow CEO, 19 Jan 2021, <document></document>

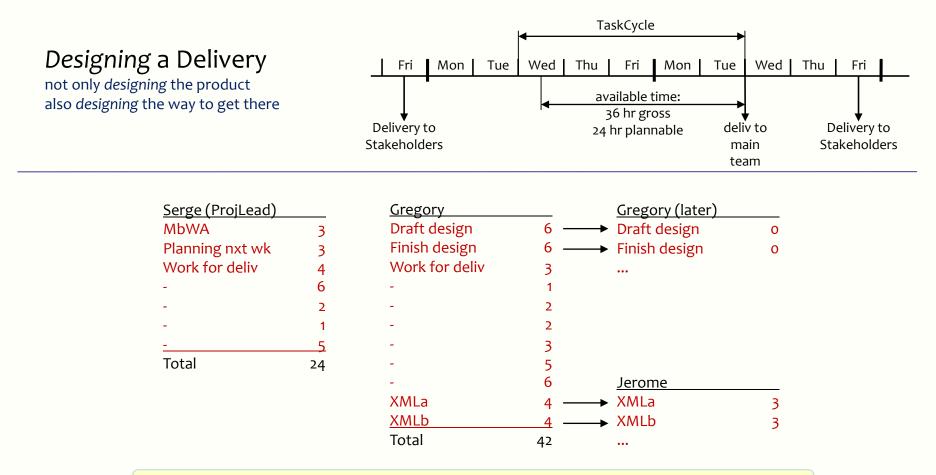

Weekly TaskCycle

quantifying the way to get there

- How much time do we have available
- 2/3 of available time is net plannable time
- What is most important to do
- Estimate effort needed to do these things
- Which most important things fit in the net plannable time (default 26 hr per week)
- What can, and are we going to do
- What are we not going to do
- Write it down ! Our fuzzy mind isn't good enough !

2/3 is default start value this value works well with development work

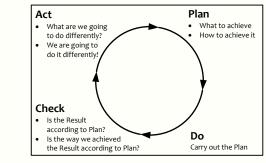



Malotaux - BCS June 2023

www.malotaux.eu/?id=weeklyplanning

Making best use of limited available time

- After the work, the time is already spent
- Before the work, we still can decide
 - What is really important
 - What is less important
 - What we must do
 - What we can do
 - What we are going to do
 - What we are not going to do
- Therefore we plan first, instead of finding out later
- We cannot change history, only improve the future


What would have happened if we wouldn't have designed this delivery?

Malotaux - BCS June 2023

www.malotaux.eu/?id=designdelivery

Every week: reflecting and preflecting

- Was all planned work really done?
- If a Task was not completed, we learn:
 - Time spent but the work not done? \rightarrow effort estimation problem
 - What did I think then, what do I know now, learn (Check and Act)
 - Time not spent? \rightarrow time management problem
 - Too much distraction
 - Too much time spent on other (poorly-estimated) Tasks
 - Too much time spent on other things
- Close unfinished Tasks after having dealt with the consequences
 - Feed the disappointment of the "failure" into your intuition mechanism
 - Define remaining Tasks, and put on the Candidate Task List
 - Declare the Task finished after having taken the consequences
- Continue with planning the Tasks for the next week

Immediate consumption of metrics Taska 2 Taskb 5 Taskc 3 Task_d 6 do Taske 1 Task_f 4 Taskg 5 26 Taskh 4 do Taski Task_k 1

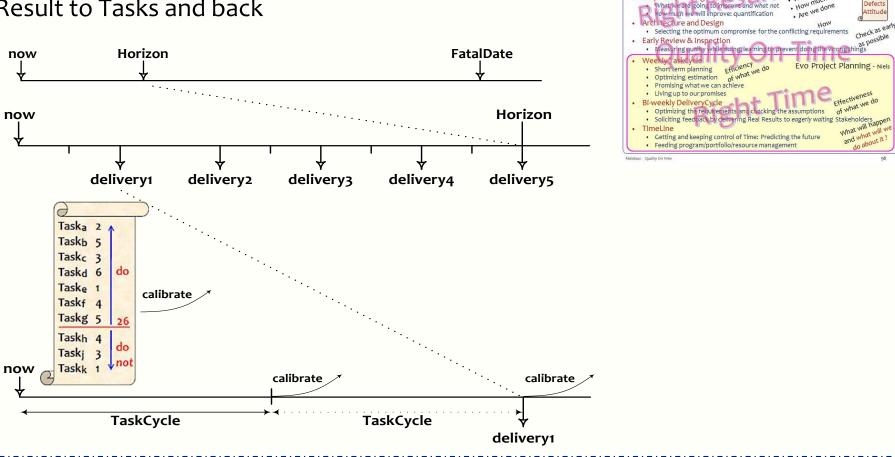
Malotaux - BCS June 2023

cycle	who	task description	estim	real	done	issues	
3	John	Net time available: 26					
		аааааааа	3	3	yes		
		bbbbbbbb [Paul]	1				
		ссссссссс	5	13	yes		TaskCycle Analysis
		ddddddd	2				(reflecting)
		eeeeeee	3	2			
		fffffffffff	2	1			
		ggggggggg	6	7	yes		
		hhhhhhh	4				
			26	26			
							learning
							icariiig
4	John	Net time available: 26					
		11111111111111	3			for team x	
		kkkkkkkk	1			for team x	
		mmmmm	5			for team x	
		nnnnnnn	2			for team x	Task Cusla Diamaina
		рррррррр	3			for team y	TaskCycle Planning
		qqqqqqq	12			for team y	(preflecting)
		rrrrrrrrrr	6			for team y	
		SSSSSSSSS	4			for team y	
		ttttttttttt	4			for team y	
			40				

- Individual preparation
 - Conclude current tasks
 - What to do next
 - How much time available
 - Estimates
- Modulation with peer / coach
 - Status
 - Priority check
 - Feasibility
 - Commitment and decision
- Synchronization with group (team meeting)
 - Formal confirmation
 - Concurrency
 - Learning
 - Helping
 - Socializing

Weekly 3-Step Procedure

Modulation costs less than Generation


Cycle	Task cycle du	ie date	<i></i> ∧ <i>Pri</i>	😔 Who	hrs	Done	TaskName
2	14 Sep 2016	wk 37	5	Chris	2		werk cluster
2	14 Sep 2016	wk 37	5	Albert	2	OK	Afhandeling
2	14 Sep 2016	wk 37	5	Albert	2	OK	Agenda ENC
2	14 Sep 2016	wk 37	5	Albert	2	OK	Afstemmen c
2	14 Sep 2016	wk 37	5	Albert	1	OK	Afstemming I
2	14 Sep 2016	wk 37	5	Albert	1	OK	Voorbereider
2	14 Sep 2016	wk 37	5	Louis	2	OK	Scope ODR
2	14 Sep 2016	wk 37	5	Louis	2	OK	Zijwind voec
2	14 Sep 2016	wk 37	5	Louis	2	OK	Uitzetgespre
2	14 Sep 2016	wk 37	5	PeterPaul	6	OK	Opstellen dra
2	14 Sep 2016	wk 37	5	Pieter	6		Procesplaat
2	14 Sep 2016	wk 37	5	Edgar	2	OK	Slide zijwind
2	14 Sep 2016	wk 37	5	Chris	2		contract met
2	14 Sep 2016	wk 37	5	Chris	3		workshop de
2	14 Sep 2016	wk 37	5	Chris	3		prep review
2	14 Sep 2016	wk 37	5	Anne-meike	1	OK	Informatie ve
2	14 Sep 2016	wk 37	5	Anne-meike	1	OK	Informatie aa

Why is this important?

- TaskCycle Planning is *not* just planning the work for the coming week
- It exposes issues immediately
- Half of what people do in their work later proves to have been unnecessary
- During the TaskCycle planning we can very efficiently see
 - What our colleagues think they're going to do
 - Make sure we're all going to work on the most important things
 - Not on unnecessary things
 - In line with the architecture and design
 - Leading most efficiently to the goal of the delivery
 - Everyone knows exactly what's going to happen, what not, and why

Cycle	Task cycle du	e date	<i>∧Pri</i>	👾 Who	hrs	Done	TaskName
2	14 Sep 2016	wk 37	5	Chris	2		werk cluster
2	14 Sep 2016	wk 37	5	Albert	2	OK	Afhandeling
2	14 Sep 2016	wk 37	5	Albert	2	OK	Agenda ENC
2	14 Sep 2016	wk 37	5	Albert	2	OK	Afstemmen c
2	14 Sep 2016	wk 37	5	Albert	1	OK	Afstemming I
2	14 Sep 2016	wk 37	5	Albert	1	OK	Voorbereider
2	14 Sep 2016	wk 37	5	Louis	2	OK	Scope ODR
2	14 Sep 2016	wk 37	5	Louis	2	OK	Zijwind voec
2	14 Sep 2016	wk 37	5	Louis	2	OK	Uitzetgespre
2	14 Sep 2016	wk 37	5	PeterPaul	6	OK	Opstellen dra
2	14 Sep 2016	wk 37	5	Pieter	6		Procesplaat
2	14 Sep 2016	wk 37	5	Edgar	2	OK	Slide zijwind
2	14 Sep 2016	wk 37	5	Chris	2		contract met
2	14 Sep 2016	wk 37	5	Chris	3		workshop de
2	14 Sep 2016	wk 37	5	Chris	3		prep review
2	14 Sep 2016	wk 37	5	Anne-meike	1	OK	Informatie ve
2	14 Sep 2016	wk 37	5	Anne-meike	1	OK	Informatie aa

Result to Tasks and back

www.malotaux.eu/?id=timeline

Evolutionary Project Management

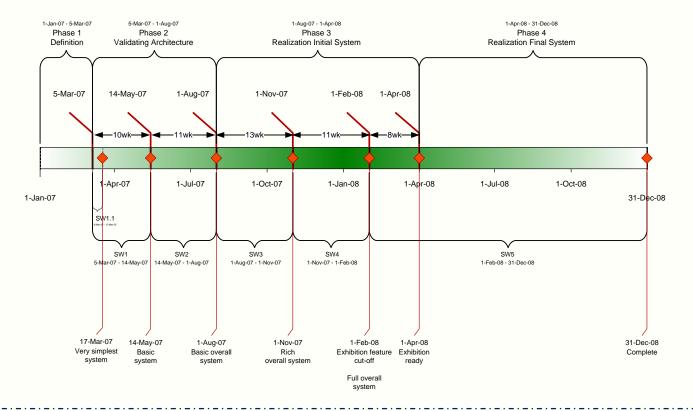
. What

· How much

elements (Evo) - Tom Gilb

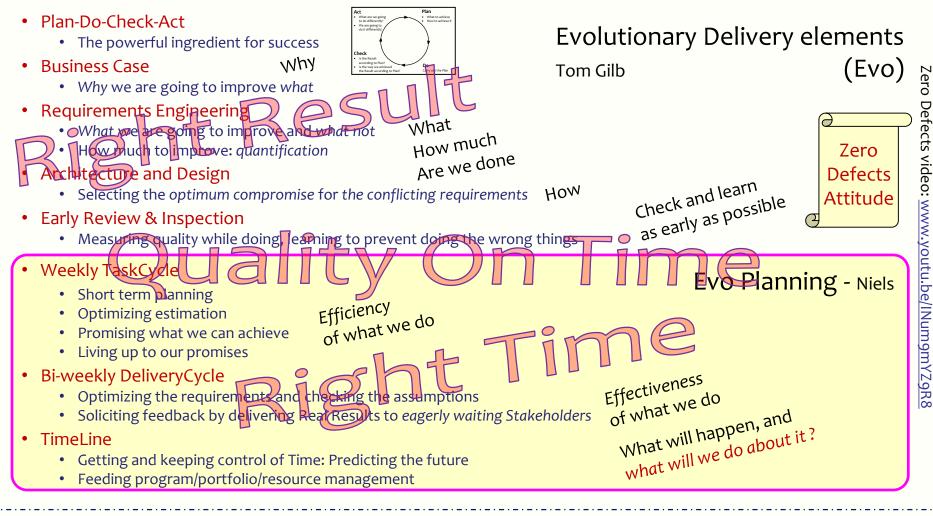
Zero

Defects Attitude


Plan-Do-Check-Act

Business Case

The powerful ingredient for success


 Why we are going to improve what ______ Requirements Engineering
 What we are going to improve and what not

TimeLine example

What's missing in general project management education ?

No excuse anymore !

- Delivering Quality on Time isn't really difficult
- I showed you some examples of how to do it
- So, there is no excuse anymore if you're not sure, just ask !
- From now on: just deliver the Right Results at the Right Time
- No complaining or excuses

• Magic Mantra:

What are we going to do about it ?!

www.malotaux.eu/?id=booklets

- Evolutionary Project Management Methods (2001)
 Issues to solve, and first experience with the Evo Planning approach
- How Quality is Assured by Evolutionary Methods (2004)
 After a lot more experience: rather mature Evo Planning process
- Optimizing the Contribution of Testing to Project Success (2005)
 How Testing fits in
- 3a Optimizing Quality Assurance for Better Results (2005) Same as Booklet 3, but for non-software projects
- 4 Controlling Project Risk by Design (2006) How the Evo approach solves Risk by Design (by process)
- 5 TimeLine: How to Get and Keep Control over Longer Periods of Time (2007) Replaced by Booklet 7, except for the step-by-step TimeLine procedure
- 6 Human Behavior in Projects (APCOSE 2008) Human Behavioral aspects of Projects
- How to Achieve the Most Important Requirement (2008)
 Planning of longer periods of time, what to do if you don't have enough time
- 8 Help ! We have a QA Problem ! (2009) Use of TimeLine technique: How we solved a 6 month backlog in 9 weeks
- 9 Predictable Projects (2012) How to deliver the Right Results at the Right Time
- RS Measurable Value with Agile (Ryan Shriver 2009) Use of Evo Requirements and Prioritizing principles

www.malotaux.eu/?id=insp Document Inspection pages

Malotaux - BCS June 2023

www.malotaux.eu/?id=conferences

www.malotaux.eu/?id=booklets

Niels Malotaux

+31-655 753 604

niels@malotaux.eu

www.malotaux.eu